1) 5*3*3*13
2)а)3 б)6 в)3 г)7
3) Простые множители числа 98 это 2, 7, 7. А простые множители числа 665 это 5, 7, 19. Ни одни из них не совпадают
1)2*2*3*3*7*11
2)4)=30; 5)=60; 6)=182; 1)=315; 2)=46; 3)=24
1)2*3*3*3*1; 2*2*2*2*7*1; 2*5*3*7*13*1
2)105 = 3*5*7
286 = 2*11*13
НОД (105;286) = 1, значит они взаимно простые
3)Разложим на простые множители 36
36 =2*2*3*3
Разложим на простые множители 45
45=3*3*5
Найдем произведение одинаковых простых множителей 3*3
НОД (36; 45) = 3*3=9
4)14 = 2 * 7 - простые множители числа
12 = (2*2) * 3 - простые множители числа
НОК (14 и 12) = (2*2) * 3 * 7 = 84 - наименьшее общее кратное
84 + 84 = 168 - общее кратное 14 и 12
168 + 84 = 252 - общее кратное 14 и 12
и т.д. + 84 ... - общее кратное 14 и 12
84 и 168 не превышают 170
84 + 168 = 252 - сумма общих кратных, не превышающих 170.
ответ: 252.
Подробнее - на -
Пошаговое объяснение:
всего в 3-х ящ 69 кг
в каждом --- ? кг, но разная ,> 20 и <30
в 3-ем макс --- ? кг
Решение.
Чтобы в третьем ящике была максимальная масса, надо, чтобы впервых двух была минимально возможная. По условию она не может быть меньше 20 кг, причем, масса не одинаковая.
20 * 3 = 60 (кг) находилось бы в ящиках, если бы во всех трех была масса, равная 20 кг
69 - 60 = 9 (кг) находится дополнительно в ящиках, так как по условию в каждом больше 20 кг
Наименьшее целое число, которое можно добавить в один из ящиков - это 1 кг, тогда во второй нужно добавить 2 кг.
1 + 2 = 3 (кг) нужно добавить в первый и второй ящик вместе
9 - 3 = 6 (кг) --- добавляем в третий ящик
20 + 6 = 26 (кг) максимально возможная масса яблок в третьем ящике.
ответ: 26 кг