1) Найти области определения и значений данной функции f.
Для аргумента и функции нет ограничений: их значения - вся числовая ось.
2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:
f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.
б) не периодическая.
3) Вычислить координаты точек пересечения графика с осями координат:
- пересечение с осью Оу (х = 0), у = -1.
- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.
4) Найти промежутки знакопостоянства функции f.
На основе нулей функции имеем:
- функция отрицательна при х < 1 (x ∈ (-∞; 1),
- функция положительна при х > 1 (x ∈ (1; +∞).
5) на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.
Находим производную функции и приравниваем нулю.
y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.
Поэтому не имеет ни минимума, ни максимума.
6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.
7) Асимптот функция не имеет.
Ивану Царевичу нужно загадать 15552. Каждый день он будет делить это число на натуральное, превосходящее 1. Лучше всего делить на 2, но 2 дня подряд нельзя использовать одно и то же число, поэтому на второй день он поделит то, что получилось, на 3. На третий день снова на 2 и так далее. Чередование 2 и 3.
Делим:
15552/2=7776 (первый день);
7776/3=2592 (второй день);
2592/2=1296 (третий день);
1296/3=432 (четвёртый день);
432/2=216 (пятый день);
216/3=72 (шестой день);
72/2=36 (седьмой день);
36/3=12 (восьмой день);
12/2=6 (девятый день);
6/3=2 (десятый день);
2/2=1 (одиннадцатый день, в который его съедят).
Итак, загадав 15552, Иван Царевич сможет продержаться ещё 10 дней.
Чтобы получить это число, необходимо понимать, что в конце концов мы придём к 1. Поэтому 15552 мы получим следущий образом:
1•2•3•2•3•2•3•2•3•2•3•2 (6 умножений на 2 и 5 умножений на 3).
новый раствор весит 600 + х грамм.
выводим уравнение, где масса соли осталась та же, но масса самого раствора увеличена.
240/ ( 600 + х ) = 0.12
240 = 72 + 0.12х
0.12х = 168
х = 1400 грамм