Тело, которое получилось, имеет веретенообразную форму: два конуса с одним общим основанием,
радиусr которого - высота ВО треугольника АВС, проведенная к стороне АС, вокруг которой треугольник вращается;
образующие - АВ и ВС соответственно;
высота каждого конуса - СО и ОА, сумма которых равна АС.
Объем тела вращения равен сумме объемов конусов:
V=v₁ +v₂
v₁=Sh₁:3=πr²h₁:3
v₂=Sh₂:3=πr²h₁:3
V=πr²h₁:3+πr²h₁:3=S(h₁+h₂):3=πr²*АС:3
Радиус r основания, общего для обоих конусов, найдем из площади треугольника АВС, найденной по формуле Герона.
Вычисления банальны, приводить поэтому иx не буду.
Площадь треугольника АВС равна 84
r=ВО=2S ᐃ АВС:АС=168:21=8
V =πr²*АС:3=π*64*21:3=448π
Площадь поверхности равна сумме площадей боковой поверхности конусов:
Sт.вр.=πrL₁+πrL₂=πr(L₁+L₁)
Sт.вр.=π*8*(10+17)=216π
Ряд функциональный и степенной. Для нахождения области сходимости надо использовать признак Даламбера и найти предел (Прямые скобки обозначают модуль):
lim = |((n+1)x^(n+2)/(2^(n+1))/(nx^(n+1)/2^n)| = lim |((n+1)x^(n+2)*2^n)/(nx^(n+1)*2^(n+1))| =
x->+∞ x->+∞
=lim |((n+1)*(x^n)*(x^2)*(2^n))/(n*(x^n)*x*(2^n)*2)| = lim |(n+1)*x/2n| = |x|/2*lim (n+1)/n =
x->+∞ x->+∞ x->+∞
= |x|/2*1 = |x|/2
Теперь нужно решить неравенство
|x|/2<1
-1<x/2<1
-2<x<2 - область сходимости.
ставишь точку d на прямой по условию можно где угодно и доказывать это не надо(т.к. это условие)
под прямым углом ставишь перпендикуляр
и все должно получиться
если что точка B является углом а C u A точки на прямой