Принимаем искомую величину, то есть время, через которое автомобили встретятся за х часов. В данной задаче проще производить сравнение по расстоянию. Составим таблицу и найдём «расстояние», которое проехал каждый автомобиль:
Один проехал до места встречи 65х (км), другой 75х (км). По условию расстояние между городами 560 км, значит сумма пройденных расстояний будет равна 560 км. Можем записать:
Автомобили встретятся через 4 часа.
Второй :
Использовать сравнение по времени. Обозначаем расстояние пройденное первым авто как S1, расстояние пройденное вторым авто как S2. Занесем скорость и расстояние в таблицу. Заполняем графу «время»:
Известно, что ехали они одинаковое время (с момента выезда каждого из своего пункта и до момента встречи). Так же известно, что сумма расстояний пройденных ими равна 560 км.
Можем составить два уравнения и решить систему:
Решив её, получим S1=260 км и S2=300 км.
Найдём время:
*Первый более рационален, решение сводится к линейному уравнению.
ответ: 4
За один час насосы заполнят:
- первый - (1/х) часть бассейна,
- второй - (1/(х + 12)) часть бассейна.
По условию первый насос проработал 10 часов, второй - 14 часов.
Составим уравнение по условию задания:
(10/х) + (14/(х + 12)) = 2/3.
(10х + 120 + 14х) / (х(х + 12)) = 2/3.
3(24х + 120) = 2х² + 24х.
2х² - 48х - 360 = 0 или, сократив на 2, получаем квадратное уравнение:
х² - 24х - 180 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-24)^2-4*1*(-180)=576-4*(-180)=576-(-4*180)=576-(-720)=576+720=1296;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√1296-(-24))/(2*1)=(36-(-24))/2=(36+24)/2=60/2=30;x₂=(-√1296-(-24))/(2*1)=(-36-(-24))/2=(-36+24)/2=-12/2=-6 этот корень не соответствует ОДЗ.
ответ. Время, за которое первый насос может наполнить бассейн равно 30 часов, второй - за (30 + 12 = 42) часа.