1. Періодичні функції
При введенні тригонометричних функцій аргумент позначався буквою t, оскільки букви х і у використовувались для позначення координат точки Pt . Те-
пер повернемось до звичних позначень: х — незалежна змінна, у — залежна змінна, тобто у = sin х, у = cos х, y = tg x.
Оскільки числам х, х ± 2π на тригонометричному колі відповідає одна й та сама точка Px , то мають місце рівності:
sin(x ± 2π) = sin x, cos(x ± 2π) = cos x .
Цю властивість функцій у = sin х і у = cos х називають періодичністю. Вона полягає у тому, що значення функції повторюються через рівні проміжки зміни аргументу. Точний зміст поняття періодичності функції міститься у наступному означенні.
Функція у = f(х) називається періодичною, якщо існує таке число T ≠ 0, що область визначення функції
разом з кожною точкою х містить точки х ± Т і при цьому виконується рівність f(х ± Т) = f(x). Число Т називається періодом функції.
Мотоцикл и автомобиль одновременно начали движение в 11:00.
Расстояние в начале пути 90 км.
Встретились в 12:00.
Скорость автомобиля до встречи 60 км/ч, мотоцикла 30 км/ч (автомобиль за час проехал 60 км, мотоцикл 30 км)
Участки без подъёма и спуска означают, что транспортное средство не двигалось, то есть останавливалось, т.к. с изменением времени расстояние не меняется.
После остановки скорость автомобиля 30 км/ч (за час проехал 1 км), скорость мотоцикла 60 км/ч (за 45 мин = 3/4 часа проехал 45 км).
Пошаговое объяснение: