М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
настена26258
настена26258
27.11.2020 05:24 •  Математика

На кубик размером а ) 3×3×3 б ) 100×100×100 плотно надели бумажный поясок. зазор какой величины возникнет, если удлинить поясок на 8м (поясок при этом остается квадратным )

👇
Ответ:
анжела286
анжела286
27.11.2020
Задача а)
Периметр КВАДРАТА - длина пояска
P1 = 4*a = 4*3 = 12
Добавили 8  и получили новый периметр
P2 = 12+8 = 20
Находим сторону нового квадрата
а2 = 20: 4 = 5.
Зазор равен ПОЛОВИНЕ разности сторон
d = (5 - 3)/2 = 2/2 = 1 м - ОТВЕТ
Аналогично - задача б)
P = 4*100 = 400
P2 = 400 + 8 = 408
a2 = 408 :4 = 102
d = (102-100)/2 = 1 м - ОТВЕТ
4,6(100 оценок)
Открыть все ответы
Ответ:
орионер
орионер
27.11.2020
Задание 1.
Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз).
На последнем месте могут стоять цифры 2 или 4 (так как числа четные).
Рассмотрим оба этих случая:
Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка).
Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6.
Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).

Аналогично в случае, когда на последнем месте цифра 4.
Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.

Суммарно 12 чисел.

ответ: 12 чисел: 1342, 1432, 3142, 3412, 4132, 4312, 1234, 1324, 2134, 2314, 3124, 3214.

Задание 2.
Последняя цифра - 1 или 3.
Рассмотрим оба варианта.

Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен.
Всего возможных вариантов:
A_3^2={3!\over(3-2)!}={1*2*3\over1}=6
Это числа 231, 321, 241, 421, 341, 431.

Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6.
Это числа 123, 213, 143, 413, 243, 423

Всего 12 возможных чисел.

ответ: 12 чисел: 231, 321, 241, 421, 341, 431, 123, 213, 143, 413, 243, 423
4,7(40 оценок)
Ответ:
Задание 1.
Все такие числа получаются записью цифр 1, 2, 3 и 4 в некотором порядке (каждая из данных цифр встречается в каждом из этих чисел ровно 1 раз).
На последнем месте могут стоять цифры 2 или 4 (так как числа четные).
Рассмотрим оба этих случая:
Зафиксируем на последнем месте цифру 2. Тогда первые 3 - некоторая перестановка из 1, 3, 4 (любая перестановка).
Всего перестановок из 3 элементов 3! = 1 * 2 * 3 = 6.
Значит если последняя цифра 2, то таких чисел 6 (это числа 1342, 1432, 3142, 3412, 4132, 4312).

Аналогично в случае, когда на последнем месте цифра 4.
Первые 3 цифры - перестановка из 1, 2, 3. Всего таких чисел 6 и это числа 1234, 1324, 2134, 2314, 3124, 3214.

Суммарно 12 чисел.

ответ: 12 чисел: 1342, 1432, 3142, 3412, 4132, 4312, 1234, 1324, 2134, 2314, 3124, 3214.

Задание 2.
Последняя цифра - 1 или 3.
Рассмотрим оба варианта.

Пусть на последней позиции стоит цифра 1. Тогда оставшиеся две цифры - какие-то из 2, 3, 4. Порядок расстановки этих чисел нам важен.
Всего возможных вариантов:
A_3^2={3!\over(3-2)!}={1*2*3\over1}=6
Это числа 231, 321, 241, 421, 341, 431.

Если последняя цифра 3, то действия аналогичные. Две оставшихся цифры выбираем из 1, 2, 4. Всего возможных вариантов выбора (с учетом порядка) 6.
Это числа 123, 213, 143, 413, 243, 423

Всего 12 возможных чисел.

ответ: 12 чисел: 231, 321, 241, 421, 341, 431, 123, 213, 143, 413, 243, 423
4,5(38 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ