Вычитание положительных целых н дробных чисел вы изучили. Рассмотримвычитание рациональных чисел (целых и дробных, положительных и отрицательных). Вычитание рациональных чисел зависит от знаков чисел уменьшаемого н вычитаемого.
Правило. Чтобы из одного числа вычесть другое, достаточно к уменьшаемому прибавить число, противоположное вычитаемому.
Например: -102 — (-80) = -102 + 80 = -22.
Правило. Если уменьшаемое — отрицательное число, а вычитаемое — положительное число, то нужно сложить модули уменьшаемого и вычитаемого и перед полученным результатом поставить знак «-».
Например: -839 — 71 = — (|-839|+|-71|) = — (839+71) = -910.
Правило. Если уменьшаемое — положительное число н вычитаемое — положительное число, то нужно найти разность модулей уменьшаемого и вычитаемого и перед полученным результатом поставить знак «-», если модуль уменьшаемого меньше модуля вычитаемого. Если модуль уменьшаемого равен модулю вычитаемого, то разность равна нулю.
5x² + 3x - 8 > 0
5x² + 3x - 8 = 0
D = 9 + 8·4·5 = 169 = 13²
5(x - 1)(x + 1,6) > 0
(x - 1)(x + 1,6) > 0
x ∈ (-∞; -1,6) U (1; +∞)
(2x² - 3x + 1)(x - 3) ≥ 0
2x² - 3x + 1 = 0
D = 9 - 2·4 = 1
2(x - 1)(x - 0,5)(x - 3) ≥ 0
(x - 1)(x - 0,5)(x - 3) ≥ 0
- 0,5 + 1 - 3 +
• • • > x
x ∈ [0,5; 1] U [3; +∞)
x² - 2x - 15 ≥ 0
x² - 2x + 1 - 4² ≥ 0
(x - 1)² - 4² ≥ 0
(x - 1 - 4)(x - 1 + 4) ≥ 0
(x - 5)(x + 3) ≥ 0
x ∈ (-∞; -3] U [5; +∞)
Нули числителя: x = -1; 2/3; 2,5.
Нули знаменателя: x = -3; 1
- -3 + -1 - 2/3 + 1 - 2,5 +
°• • °• > x
ответ: x ∈ (-3; -1] U [2/3; 1) U [2,5; +∞).
Подробнее - на -
Пошаговое объяснение:
4 см решение
16\4=4 так как у квадрата 4 равных стороны и вот 4 см это мы узнали сколько всего сторон у квадрата по скольку см всё ответ прост