ответ: 18 кв. см..
Пошаговое объяснение:
1) площадь боковой пирамиды, у которой рёбра равнонаклоненны к плоскости основания равна половине произведения периметра основания на высоту боковой грани,т.е. S бок = ½·P осн·SM (см. рис.).
2) Найдём периметр основания, для этого вычислим гипотенузу по теореме Пифагора АВ= √ВС²+АС²=√6²+3²=√45=3√5 (см), тогда Р = 9+3√5 (см).
3)Найдём высоту бок. грани из Δ SHM - прям.:
SM= 2·MH= 2·(AC+BC-AB)/2=9-3√5 (cм) (!!!МН - радиус вписанной окружности) .
Тогда S бок = ½·P осн·SM = ½·(9+3√5)(9-3√5)= ½·(81-45)=18 (кв.см.)
ответ: 18 кв. см..
Отрезки катетов от вершин до точек касания равны 5 и 12. Оставшиеся отрезки обозначим за х.
По Пифагору (5+х)² + (12+х)² = (5+12)².
25+10х+х²+144+24х+х² = 289.
Получили квадратное уравнение 2х²+34х-120 = 0 или
х²+17х-60 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=17^2-4*1*(-60)=289-4*(-60)=289-(-4*60)=289-(-240)=289+240=529;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√529-17)/(2*1)=(23-17)/2=6/2=3;x₂=(-√529-17)/(2*1)=(-23-17)/2=-40/2=-20 (отрицательное значение отбрасываем).
ответ: АВ = 5+3 = 8.
ВС = 12+3 = 15.
Проверка: 8² + 15² = 64+225 = 289 = 17².