Условие
На столе в ряд лежат четыре монеты. Среди них обязательно есть как настоящие, так и фальшивые (которые легче настоящих). Известно, что любая настоящая монета лежит левее любой фальшивой. Как за одно взвешивание на чашечных весах без гирь определить тип каждой монеты, лежащей на столе?
Решение
Пронумеруем монеты слева направо. Так как среди монет есть обязательно настоящая и фальшивая, то первая монета настоящая, а четвертая– фальшивая. Необходимо определить вид второй и третьей монет. Настоящие монеты лежат левее фальшивых, значит возможны следующие случаи: 1)настоящая, настоящая, настоящая, фальшивая; 2)настоящая, настоящая, фальшивая, фальшивая; 3)настоящая, фальшивая, фальшивая, фальшивая.
Положим на левую чашу весов первую и четвертую монеты, а на правую чашу весов– вторую и третью монеты.
1) Если правая чаша перевесила, то на ней лежат только настоящие монеты, т.е. вторая и третья монеты– настоящие.
2) Если весы находятся в равновесии, то на каждой чаше лежат настоящая и фальшивая монеты, т.е. вторая монета– настоящая, а третья– фальшивая.
3) Если левая чаша перевесила, то на правой чаше лежат только фальшивые монеты, т.е. вторая и третья монеты– фальшивые.
Пошаговое объяснение:
Пусть a, b, c - первые три члена арифметической прогрессии, тогда по условию:
а + b + с = 15 [1]
По свойству арифметической прогрессии:
b - а = с - b
2b = а + с подставим в уравнение [1], получим:
2b + b = 15
3b = 15
b = 5 - второй член арифметической прогрессии.
Тогда сумма первого и третьего членов:
а + с = 15 - 5
а + с = 10 ⇒ c = 10 - a
Переходим к геометрической прогрессии. По условию:
первый член = а + 1
второй член = b + 3 = 5 + 3 = 8
третий член = с + 9 = 10 - a + 9 = 19 - a
По свойству геометрической прогрессии:
Получили а = 3, тогда с = 10 - а = 10 - 3 = 7
Итак, первые три члена арифметической прогрессии: 3; 5; 7.
Найдем три первых члена геометрической прогрессии:
первый член = а + 1 = 3 + 1 = 4
второй член = 8
третий член = с + 9 = 7 + 9 = 16
Искомая геометрическая прогрессия: 4; 8; 16; ...
Найдем сумму 7 первых членов.
b₁ = 4 - первый член
q = b₂/b₁ = 8/4 = 2 - знаменатель прогрессии
Искомая сумма:
ответ: 508