1 20х+8=30х-30+15
20х-30х=-15-8
-10х=-23
х=2,3
2 2*[-49]=14х-21+7
-98=14х-14
х=-6
3 5,6 - 6 + 1,2х = 0,4(4x + 1) ;
-0,4 + 1,2х = 1,6x + 0,4 ;
1,2х - 1,6х = 0,4 + 0,4 ;
-0,4х = 0,8 ;
х = -2;
4 5x-60=6x-60-x
5x-6x+x=60-60
0=0
5 0,3*(8-3у)=3,2-0,8(у-7)
2,4-0,9у=3,2-0,8у+5,6
2,4-3,2-5,6=0,9у-0,8у
2,4-8,8=0,1у
-6,4=0,1у
у=-6,4:0,1
у=-64
6 4 (х-1)=2(2х-8)+12
4x - 4 = 4x - 16 + 12
4x - 4 = 4x - 4
x может быть любым
7 40-24х=12-24х+7
40-24х=-24х+19
-24x+24x=19-40
Тогда получается 0=-21
корней нет
8 28х-7=6-6+28х
0=7
корней нет
Пошаговое объяснение:
ответ:
документа
«проект "многоугольники"»
гбпоу ао «котласский транспортный техникум»
индивидуальный проект по теме:
«построение правильных многоугольников»
выполнил: обучающийся 1 курса
группа № 296
михайлов богдан владимирович
проверил: преподаватель
е.н. витязева
пос. вычегодский
2017 год
содержание
1.введение
2. определение правильного многоугольника.
2.треугольник
3.квадрат
4.пятиугольник
5. пентаграмма
6.шестиугольник
7.гексаграмма
8.правильные восьмиугольник (октагон)
9.семиугольник
10.гептаграмма
11.октаграмма
12.девятиугольник
13. заключение.
14.список .
введение
цель проекта - изготовить наглядное пособие по теме "построение правильных многоугольников".
:
1. изучить по данной теме.
2. отобрать материал для выполнения проекта.
3. познакомиться с правильных многоугольников.
4.изучить способы построения некоторых правильных многоугольников.
5. подготовить презентацию для защиты проекта.
актуальность.
при изучении предмета важно уметь правильно и красиво выполнять чертежи как для решения так и для самостоятельного изображения фигур. в школьном курсе изучаются обычно 3 вида правильных многоугольников: равносторонний треугольник, квадрат, правильный шестиугольник. моя работа расширить студентам сведения о правильных многоугольниках и поддержать интерес к изучению .
определение правильного многоугольника.
пра́вильный многоуго́льник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.
определение правильного многоугольника может зависеть от определения многоугольника: если он определён как плоская замкнутая ломаная, то появляется определение правильного звёздчатого многоугольника как невыпуклого многоугольника, у которого все стороны между собой равны и все углы между собой равны.
построение правильного многоугольника с n сторонами оставалось проблемой для вплоть до xix века. такое построение идентично разделению окружности на n равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.
средневековая почти никак не продвинулась в этом вопросе. лишь в 1796 году карлу фридриху гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу ферма, то его можно построить при циркуля и линейки. на сегодняшний день известны следующие простые числа ферма: 3, 5, 17, 257, 65537. вопрос о наличии или отсутствии других таких чисел остаётся открытым.
точку в деле построения правильных многоугольников поставило нахождение построений 17-, 257- и 65537-угольника. первое было найдено йоханнесом эрхингером в 1825 году, второе — фридрихом юлиусом ришело в 1832 году, а последнее — иоганном густавом гермесом в 1894 году.
с тех пор проблема считается полностью решённой.
пятиугольник - это многоугольник с пятью углами. также пятиугольником называют всякий предмет такой формы.
пентагра́мма - фигура, полученная соединением вершин правильного пятиугольника через одну; фигура, образованна совокупностью всех диагоналей правильного пятиугольника.
шестиугольник - многоугольник с шестью углами. также шестиугольником называют всякий предмет такой формы.
гексаграмма - звезда с шестью углами, которая образуется из двух наложенных друг на друга равносторонних треугольников.
правильный восьмиугольник (октагон)
фигура из группы правильных многоугольников. у него восемь сторон и восемь углов, все углы и стороны равны между собой.
семиуго́льник
называемый иногда гептагон многоугольник с семью углами. семиугольником также называют всякий предмет такой формы.
гептаграмма
(от греч. hepta – “семь” и gramma – “черта”) семиконечная фигура (звезда), магический знак семерицы.
октаграмма
восьмилучевая звезда, крестострел.
девятиуго́льник
многоугольник с девятью углами. девятиугольником также называют всякий предмет, имеющий такую форму.
заключение.
в ходе выполнения проекта я
1. изучил по данной теме.
2. отобрал материал для выполнения проекта.
3. познакомился правильных многоугольников.
4.изучил способы построения некоторых правильных многоугольников.
5. подготовил презентацию для защиты проекта.