Еорема Байеса (или формула Байеса) — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Другими словами, по формуле Байеса можно более точно пересчитать вероятность, взяв в расчет как ранее известную информацию, так и данные новых наблюдений. Формула Байеса может быть выведена из основных аксиом теории вероятностей, в частности из условной вероятности. Особенность теоремы Байеса заключается в том, что для её практического применения требуется большое количество расчетов, вычислений, поэтому байесовские оценки стали активно использовать только после революции в компьютерных и сетевых технологиях.
Теорема Байеса (или формула Байеса) — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Другими словами, по формуле Байеса можно более точно пересчитать вероятность, взяв в расчет как ранее известную информацию, так и данные новых наблюдений. Формула Байеса может быть выведена из основных аксиом теории вероятностей, в частности из условной вероятности. Особенность теоремы Байеса заключается в том, что для её практического применения требуется большое количество расчетов, вычислений, поэтому байесовские оценки стали активно использовать только после революции в компьютерных и сетевых технологиях.
1) 15мин это 1 , 3мин это Х ; Х = 3*1:15=0,2 ( наполнит бак основной кран , через 3 мин ); 2) 25мин - 15мин = 10мин ( наполняется бак из двух кранов ); 3) 1 - 0,2 = 0,8 ( останется наполнить бак , через 3 мин); 4) 10мин это 1, Хмин это 0,8 ; Х = 10*0,8:1 = 8мин ( наполнится оставшееся часть бака , из двух кранов); 5) 3мин + 8мин = 11мин ( был наполнен бак).
Т.к. бак наполняется через основной кран за 15 минут, следовательно, за 1 минуту через основной кран заполняется (1/15) часть бака, аналогично, через запасной кран заполняется в 1 минуту (1/25) часть бака. за 3 минуты через основной кран заполнилось сначала 3*(1/15) = 3/15 = 1/5 часть бака осталось заполнить 1 - (1/5) = 4/5 бака остальное время (х минут) оба крана были открыты, т.е. они вместе за 1 минуту заполняли (1/15) + (1/25) = (5+3)/75 = 8/75 часть бака х*(8/75) = 4/5 х = (4/5) * (75/8) = 75/10 минуты = 7.5 минуты бак был наполнен за 10.5 минут