Пошаговое объяснение:
Подставляем значения всех возможных выражений в уравнения.
1366:
1)x+y-2=0
a) (-1;3)
-1+3-2=-3+3=0
б) (-8;6)
-8+6-2=-10+6=-4
Не подходит.
ответ (-1;3)
2)2x+y-4=0
a) (0,5;3)
2*0,5+3-4=4-4=0
б) (-3;2)
2*(-3)+2-4=-10+2=-8
Не подходит.
ответ: (0,5;3)
1367
1)2x+y-6=0
a) (3;0)
6-6=0
б) (4;-2)
8-2-6=0
в) (5;-2)
10-2-6=2
Не подходит.
г) (-1;8)
-2+8-6=0
ответ: (3;0), (4;-2), (-1;8)
2)5x-2y-8=0
а) (2;1)
10-2-8=0
б) (-3;-11,5)
-15+11,5-8=-11,5
Не подходит.
в) (-1;6)
-5-12-8=-25
Не подходит.
г) (3;3,5)
15-7-8=0
ответ: (2;1), (3;3,5)
ответ: 11. x+1/2*ln²(x)+C, 12. 2/5*(x-1)^(5/2)+2/3*(x-1)^(3/2)+C, 13.-1/[3*arcsin³(x)]+C.
Пошаговое объяснение:
11. ∫[x²+x*ln(x)]*dx/x²=∫dx+∫ln(x)*dx/x=∫dx+∫ln(x)*d[ln(x)]. Полагая ln(x)=t, получим ∫[x²+x*ln(x)]*dx/x²=∫dx+∫t*dt=x+1/2*t²+C=x+1/2*ln²(x)+C.
12. Пусть x-1=t ⇒ dx=dt⇒∫x*√(x-1)*dx=∫(t+1)*√t*dt=∫t^(3/2)*dt+∫t^(1/2)*dt=2/5*t^(5/2)+2/3*t^(3/2)+C=2/5*(x-1)^(5/2)+2/3*(x-1)^(3/2)+C.
13. Так как dx/√(1-x²)=d[arcsin(x)], то ∫dx/[√(1-x²)*arcsin⁴(x)]=∫d[arcsin(x)]/arcsin⁴(x). Пусть arcsin(x)=t⇒∫dx/[√(1-x²)*arcsin⁴(x)]=∫dt/t⁴=-1/(3*t³)+C=-1/[3*arcsin³(x)]+C.
а = 1
а = 4
а = 9
а = 16
а = 25
В общем любой квадрат целого числа.