1. 17x-8=20x+7
17x-20x=7+8
-3x=15
x= 15/(-3)
x=-5
2. Решение задачи:
Пусть х – столько килограммов яблок собрал младший брат, тогда 3х кг – собрал старший брат, а (х + 13) кг – собрал средний брат.
По условию задачи вместе три брата собрали 88 кг яблок.
Имеем уравнение:
х + 3х + (х + 13) = 88,
5х + 13 = 88,
5х = 88 – 13,
5х = 75,
х = 75 : 5,
х = 15.
ответ: 15 кг яблок собрал младший брат.
3. не знаю как решать
4. Пусть х л воды было в каждой цистерне первоначально, тогда
(х-54) л воды стало в первой цистерне, а
(х-6) л воды стало во второй цистерне.
Т.К. в первой стало в 4 раза меньше, чем во второй, то составим уравнение: 4(х-54)=х-6, 4х-216-х+6+0; 3х=210; х=70
ответ: в цистернах было по 70л воды
5.Уравнение равняется нулю, когда один из множителей ( в нашем случае выражения в скобках) равен нулю.
Приравняем каждую из скобок к нулю.
(3х+42)(4,8-0,6х)=0
3х + 42 = 0;
3х = - 42;
х = - 42 : 3;
х1 = - 14;
4,8 - 0,6х = 0;
0,6х = 4,8;
х = 4,8 : 0,6;
х2 = 8.
ответ: х1 = - 14 и х2 = 8.
Пошаговое объяснение:
Если сложить два трехзначных числа, состоящих исключительно из этой цифры, то получим число (999 + 999) = 1998, довольно близкое к искомому нами числу 2017, отличающемуся от него на 19 единиц. Вместе с тем, число 19 легко представить в виде (9 + 9 + 1) или, если использовать только девятки, то (9 + 9 + 9 / 9).
Но если мы просто запишем 2017 в виде
(999 + 999 + 9 + 9 + 9 / 9),
то условия задачи не будут соблюдены, поскольку
вышеприведенная запись содержит десять цифр, а нам необходимо обойтись девятью, поэтому постараемся преобразить запись.
Очевидно, что (999 + 999) = 2 * 999 = 999 * (9 + 9) / 9. еще преобразим
(999 * (9 + 9) + 9)/ 9 + 9 +9.
35x = 700
X = 700 : 35
X = 20