3) - высказывание истинно
Пошаговое объяснение:
В задаче ошибка, бесконечные множества не равны конечным множествам. Вместо равенства должно было быть знак подмножества.
Исправленная задача: Какое высказывание является истинным:
1) {-5; 1/2} ⊂ Z.
2){0; 17} ⊂ N.
3) {-1/3,4,0} ⊂ Q.
Решение.
Z - множество целых чисел, поэтому дробное число 1/2 равная половине не принадлежит множеству Z: 1) - высказывание ложно.
N - множество натуральных чисел, поэтому не содержит число 0: 2) - высказывание ложно.
Q - множество рациональных чисел, по определению, содержит числа представимые в виде p/q, где p ∈ Z, q ∈ N. Поэтому все элементы множества {-1/3,4,0} принадлежать множеству Q:
-1/3, в представлении p = -1, q = 3;
4, в представлении p = 4, q = 1;
0, в представлении p = 0, q = 1.
3) - высказывание истинно.
Пошаговое объяснение:
Расстояние между городами 462 км.
Направление движения: на встречу друг другу.
Выехали из двух городов одновременно.
Скорость грузового автомобиля на 16 км/ч больше автобуса.
Время движения 3 ч.
Определить скорость грузового автомобиля и автобуса.
Пусть скорость автобуса равна х км/ч, тогда скорость грузового автомобиля будет (х + 16) км/ч.
Расстояние, на которое сближаются грузовой автомобиль, и автобус за единицу времени, называют скоростью сближения vсб.
В случае движения грузового автомобиля и автобуса навстречу друг другу, скоростью сближения равно: vсб = v1 + v2
Если начальная расстояние S между грузовым автомобилем и автобусом равна 462 километров и они встретились через tвст = 3 ч, то S = vсб * tвст = (v1 + v2) * tвст
Составим уравнение:
(х + (х + 16)) * 3 = 462
(х + х + 16) * 3 = 462
(2х + 16) * 3 = 462
2х + 16 = 462 : 3
2х + 16 = 154
2х = 154 – 16
2х = 138
х = 138 : 2
х = 69
Скорость автобуса равно 69 км/ч.
Скорость грузового автомобиля равно 69 + 16 = 85 км/ч.
ответ: скорость автобуса — 69 км/ч; скорость грузовой машины — 85 км/ч.