Найти х, у, z
80% = 80/100 = 4/5 - сократили на 20
х : у = 4 : 5 - отношение первого числа ко второму
0,5 : 9/20 = 1/2 · 20/9 = 10/9
у : z = 10 : 9 - отношение второго числа к третьему
Домножим первую пропорцию на 2 (чтобы уравнять у)
х : у = 4 : 5 = (4 · 2) : (5 · 2) = 8 : 10
Составим новую пропорцию:
х : у : z = 8 : 10 : 9
Пусть k - коэффициент пропорциональности, тогда х = 8k, y = 10k, z = 9k. Сумма первого и третьего на 70 > второго числа. Уравнение:
(8k + 9k) - 10k = 70
7k = 70
k = 10
x = 8k = 8 · 10 = 80
y = 10k = 10 · 10 = 100
z = 9k = 9 · 10 = 90
ответ: числа 80, 100 и 90.
d= (n^2 -3n)/2
Прибавляем количество сторон n-угольника:
x= (n^2 -3n)/2 +n = (n^2 -n)/2
Подставляем данные из условия (x=45):
(n^2 -n)/2 =45 <=> n^2 -n -90 =0 <=> n=10, n>0
ИЛИ
Количество дорожек растет в арифметической прогрессии:
2 домика -- 1 дорожка,
3 домика -- 1+2 дорожки,
4 домика -- 1+2+3 дорожки...
С прибавлением n-го домика прибавляется n-1 дорожек.
Сумма m членов арифметической прогрессии:
a_1= 1 (первый член прогрессии)
a_m= n-1
m= n-1
Sm= (a_1 +a_m)m/2 = (1 +n-1)(n-1)/2 = n(n-1)/2
n(n-1)/2=45 <=> n=10, n>0