{
Вероятностью (вероятностной мерой) называется мера (числовая функция) {\displaystyle \mathbf {P} }\mathbf {P} , заданная на множестве событий, обладающая следующими свойствами:
Неотрицательность: {\displaystyle \forall A\subset X\colon \mathbf {P} (A)\geqslant 0}\forall A\subset X\colon {\mathbf P}(A)\geqslant 0,
Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.
Конечность (ограниченность единицей): {\displaystyle \mathbf {P} (X)=1}{\mathbf P}(X)=1,
В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.
Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности
Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.
1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:
{\displaystyle \mathbf {P} \{\varnothing \}=0;}{\mathbf {P}}\{\varnothing \}=0;
Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.
2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:
{\displaystyle \mathbf {P} \{A\}\leqslant \mathbf {P} \{B\};}{\mathbf {P}}\{A\}\leqslant {\mathbf {P}}\{B\};
Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.
3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:
{\displaystyle 0\leqslant \mathbf {P} \{A\}\leqslant 1;}0\leqslant {\mathbf {P}}\{A\}\leqslant 1;
Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf {P}}\{X\}=1.
4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:
{\displaystyle \mathbf {P} \{B\setminus A\}=\mathbf {P} \{B\}-\mathbf {P} \{A\};}{\mathbf {P}}\{B\setminus A\}={\mathbf {P}}\{B\}-{\mathbf {P}}\{A\};
Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.
5) вероятность события {\displaystyle {\bar {A}}}{\bar {A}}, противоположного событию {\displaystyle A}A, равна:
{\displaystyle \mathbf {P} \{{\bar {A}}\}=1-\mathbf {P} \{A\};}{\mathbf {P}}\{{\bar {A}}\}=1-{\mathbf {P}}\{A\};
Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf {P}}\{X\}=1.
6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:
{
Масштаб плана 1:1000. Во сколько раз расстояние между двумя точками на местности? В сколько раз расстояние между двумя точками на местности ?
Читаем масштаб 1:1000
единицы не пишутся, они в см
значит 1см на плане =1000см настоящего расстояния на местности
1000см :1см= 1000 раз больше расстояние на местности, чем на плане
1) Чему равно расстояние между двумя точками на местности, если на плане оно равно 1,5 см? 12 см?
1м = 100см
1,5см на плане
1,5•1000= 1500см на местности
1500см= 1500:100см= 15м расстояние на местности ответ.
12см на плане
12•1000=12000см на местности
12000см= 12000:100см= 120м расстояние на местности ответ.
2) Чему равно расстояние между двумя точками на плане, если на самом деле оно равно 20 м? 350 м?
1м= 100см
20м = 20•100см= 2000см
2000:1000=2 см расстояние
на плане ответ.
350м = 350•100см= 35000см
35000:1000=35 см растояние
На плане ответ.
Можно ли на этом плане указать точки,расстояние которыми на местности равно 0,5 м?
0,5м= 0,5•100=50 см на местности
50:1000= 5/100см = 1/20см= 0,05см
1см= 10мм
0,05 см= 5/100см = 5/100• 10мм = 5/10мм = 1/2мм = 0,5 мм половинка мм на плане
ответ: нет, на этом плане показать точки с расстоянием 0,5 мм нельзя.
20*(7*у+5)+17=140*у+100+17=140*у+117
140*у делится на 7
ну а 117 делится на 7 с остатком 5
значит и всё число делится на 7 с остатком 5