Трапеция равнобедренная, значит, углы при ее основаниях равны. проведем две высоты из вершин меньшего основания - см. рисунок нижнее основание разделится на 3 отрезка: 21 + 50 + 21 рассмотрим прямоугольный треугольник, образованный боковой стороной и высотой трапеции. по условию угол при основании равен 60°, значит, второ острый угол данного прямоугольного треугольника равен 90° - 60° = 30° длина катета, лежащего напротив угла в 30°, в два раза меньше длины гипотенузы. значит, длина боковой стороны равна 21 х 2 = 42 найдем периметр: 29 + 50 + 42 + 42 = 163
А) an=a1+d(n-1) a2=2,7-3=-0,3 a9=2,7+(-3)×(9-1)=2,7-24= - 21,3 an+3=a1+d(n+3-1)=2,7-3(n+2)=2,7-3n-6= - 3,3-3n b) a1=12 d=17-12=5 82=12+5(n-1) 82=12+5n-5 5n=82-12+5 5n=75 n= 15 ответ: это 15 член прогрессии в) -2=а1+d*2 (это формула для третьего члена прогрессии) -38=а1+d*11 (формула для двенадцатого члена) составляем систему двух этих уравнений и рещаем ее: методом вычитания вычитаем из второго уравнения первое и получаем: -36=9d d=-4 d подставляем в первое уравнение и находим -2=а1-4*2. отсюда а1=6 ответ а1=6 d=-4