a) наибольшее 36 и наименьшее 9
б) наибольшее 49 и наименьшее 1
в) наибольшее 81 и наименьшее 0
г) наибольшее 100 и наименьшее 0
Пошаговое объяснение:
Парабола y=x² на интервале (-∞;0) строго убывает, а на интервале (0;+∞) строго возрастает. Поэтому на промежутках содержащих значение х=0 наименьшее значение функции всегда 0, а наибольшее значение функции определяется в граничных точках.
В промежутках не содержащих значение х=0 наибольшее и наименьшее значения функции определяется в граничных точках.
а) [3; 6] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(3)=3²=9 и y(6)=6²=36
б) [-7; -1] не содержит х=0, поэтому наибольшее и наименьшее значения функции определяется среди y(-7)=(-7)²=49 и y(-1)=(-1)²=1
в) [-2; 9] содержит х=0, поэтому наибольшее значение функции определяется среди y(-2)=(-2)²=4 и y(9)=9²=81, а и наименьшее значение функции равно 0
г) [-10; 4] содержит х=0, поэтому наибольшее значение функции определяется среди y(-10)=(-10)²=100 и y(4)=4²=16, а и наименьшее значение функции равно 0
а) (х+1)²>0 х∈(-∞;-1)∪(-1;+∞), т.к. при х=-1 левая часть обращается в нуль. но нуль не может быть больше нуля. ответ объединение двух промежутков.
б) 4х²-х+9<0 дискриминант левой части равен 1-4*36<0 a=4>0, значит, для любого действительного х левая часть неравенства больше нуля. нулю она тоже не равна. т.к. дискриминант меньше нуля. а это означает. что неравенство не имеет решений.
с) -х²+4х-7=0, дискриминант 16-28 отрицательный. значит. парабола не пересекается с осью ох, находится ниже оси. т.к. первый коэффициент равен минус один, ветви направлены вниз, значит, для любого х левая часть меньше, а не больше нуля. т.е. неравенство решений не имеет.
д) (х-3)(х+3)<0 решим методом интервалов. корни левой части ±3
___-33
+ - +
х∈(-3;3)