М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
AndrewLoveRem
AndrewLoveRem
01.05.2021 14:41 •  Математика

Разделите числитель и знаминатель каждой из дробей на 3. выпишите соотвествующие равенства: 3/6, 6/12, 12/15, 15/18, 18/21, 12/24, 45/60, 63/96, 105/120.

👇
Ответ:
KopolbEnufaHtuy
KopolbEnufaHtuy
01.05.2021
3/6 = 1/2
6/12 = 2/4
12/15 =4/5
15/18 5/6
18/21 = 6/7
 12/24 = 4/8
45/60 = 15/20
63/96 = 21/32
105/120 = 35/40.
4,8(97 оценок)
Открыть все ответы
Ответ:
milenkakonfetka
milenkakonfetka
01.05.2021

ответ:

. дан отрезок ав. с циркуля и линейки разделите его на три равные части.

построение. 1) проведем отрезок ав;

2) из точки а проведем окружность произвольного радиуса, которая пересекает отрезок ав в точке д, а его продолжение за точку а - в точке с;

3) из точек с и д проводим окружности радиусом большим сд, пересекающиеся в точках м и n, через полученные точки проводим прямую мn, которая перпендикулярна прямой ав;

4) возьмем произвольную точку р прямой мn и проведем через нее прямую рк, перпендикулярную прямой мn; прямые ав и рк будут параллельны;

5) от начала р луча рм отложим три равных отрезка рр1, р1р2, р2р3, каждый из которых меньше отрезка ав;

6) через точки р3 и в проведем прямую, которая пересечет прямую мn в точке q;

7) проводим прямые р2q и р1q, которые и разделят отрезок ав на три равные части, аа1 = а1а2 = а2в. нетрудно доказать, используя подобие треугольников, что построенные части отрезка ав действительно равны.

пошаговое объяснение:

4,6(24 оценок)
Ответ:
Facegga
Facegga
01.05.2021
Sin 3x + Sin 5x = 2(Cos² 2x - Sin² 3x)

Для левой части ур-ия применим формулу суммы синусов:
Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2)
А для правой части формулы понижения степени:
Cos² x = (1 + Cos 2x) / 2
Sin² x = (1 - Cos 2x) / 2

То есть:
2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))

2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x

2Sin 4x · Cos x = Cos 4x + Cos 6x

Для правой части ур-ия применим формулу суммы косинусов:
Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)

2Sin 4x · Cos x = 2Cos 5x * Cos x

2Sin 4x · Cos x - 2Cos 5x * Cos x = 0

Выносим общий множитель 2Cos x:
2Cos x · (Sin 4x - Cos 5x) = 0

Отсюда:
Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое

Sin 4x - Cos 5x = 0

Cos (π/2 - 4x) - Cos (5x) = 0

Применяем формулу разности косинусов:
Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)

То есть:
-2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0

1) Sin ((π/2 + x)/2) = 0
(π/2 + x)/2 = πk
π/2 + x = 2πk
x = -π/2 + 2πk

2) Sin ((π/2 - 9x)/2) = 0
(π/2 - 9x)/2 = πk
π/2 - 9x = 2πk
9x = π/2 - 2πk
x = π/18 - 2π/(9k)

ответ:
x = ±π/2 + 2πk, k — целое
x = π/18 - 2π/(9k)
4,8(95 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ