По Пифагору определяем гипотенузу АС треугольника АВС. АС = √(12² + 16²) = √(144 + 256) = √ 400 = 20. Вершина М проецируется на основание в точку О - середину АС. Проекция высоты грани ВМС на основание равна половине АВ, то есть 12/2 = 6. Отсюда высота H пирамиды равна 6*tg 60° = 6√3. Эта высота равна высоте грани АМС. Находим высоты других граней. Высота грани АМВ = √(8² + Н²) = √(64 + 108) = √172 = 2√43. Высота грани ВМС = √(6² + Н²) = √(36 + 108) = √144 = 12. Получаем ответ: - площадь грани МВС = (1/2)*16*12 = 96. - площадь боковой поверхности конуса равна πR√(R² + H²) = (40√13)*π.
(32-(36+8х):5)= 12
(36+8х):5=32-12
(36+8х):5=20
(36+8х)=20*5
(36+8х)=100
8х=100-36
8х=64
х=64:8
х=8