а) 6 = 2 · 3; 8 = 2³; НОК = 2³ · 3 = 24 - общ. знаменатель
1/6 и 3/8 = 4/24 и 9/24
б) 9 = 3²; 15 = 3 · 5; НОК = 3² · 5 = 45 - общ. знаменатель
4/9 и 7/15 = 20/45 и 21/45
в) 12 = 2² · 3; 8 = 2³; НОК = 2³ · 3 = 24 - общ. знаменатель
5/12 и 1/8 = 10/24 и 3/24
г) 15 = 3 · 5; 12 = 2² · 3; НОК = 2² · 3 · 5 = 60 - общ. знаменатель
8/15 и 11/12 = 32/60 и 55/60
д) 10 = 2 · 5; 12 = 2² · 3; НОК = 2² · 3 · 5 = 60 - общ. знаменатель
9/10 и 5/12 = 54/60 и 25/60
е) 12 = 2² · 3; 18 = 2 · 3²; НОК = 2² · 3² = 36 - общ. знаменатель
13/12 и 13/18 = 39/36 и 26/36
Правила умножения и деления алгебраических дробей
Умножение и деление алгебраических дробей выполняется по тем же правилам, по которым проводятся соответствующие действия с обыкновенными дробями. Напомним их.
Нам известно, что при умножении обыкновенных дробей отдельно перемножаются числители и отдельно – знаменатели, первое произведение записывается числителем, а второе – знаменателем. Например, .
А деление обыкновенных дробей заменяется умножением на дробь, обратную делителю. К примеру, .
Теперь можно увидеть отчетливое сходство с правилами умножения и деления алгебраических дробей, которые мы сейчас и сформулируем.
Умножение двух и вообще любого числа алгебраических дробей в результате дает дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей перемножаемых дробей. Этому правилу отвечает равенство , где a, b, c и d – некоторые многочлены, причем b и d – ненулевые.
Чтобы разделить одну алгебраическую дробь на другую, нужно первую дробь умножить на дробь, обратную второй. То есть, деление алгебраических дробей выполняется следующим образом , где a, b, c и d – некоторые многочлены, причем b, c и d – ненулевые.
Здесь стоит обратить внимание на то, что под алгебраической дробью, обратной данной, понимают такую дробь, произведение которой с исходной тождественно равно единице. То есть, взаимно обратные алгебраические дроби определяются аналогично взаимно обратным числам. И из того, как мы определили умножение алгебраических дробей, следует, что взаимно обратные алгебраические дроби различаются тем, что у них числители и знаменатели переставлены местами. Например, обратной к алгебраической дроби будет дробь .
Пошаговое объяснение:
АМ = СМ, т.к. М делит АС на две равные части,
ОМ - общ. сторона,
Уголы АМО и СМО - прямые.
Треугольники АОМ и СОМ равны по двум сторонам и углу между ними и являются прямоугольные → АОС - р/б