№1. Площадь боковой грани (прямоугольный треугольник равными с катетами по 10 см) S₁ = 10 * 10 : 2 = 50 (cm²) В правильной треугольной пирамиде - ТРИ равных боковых грани S = 3S₁ = 3 * 50 = 150 (cm²)
№2. Боковая грань усеченной пирамиды - равнобокая трапеция, с основаниями а = 1, b = 9 и боковой стороной c = 5. Высоты трапеции, проведенные от меньшего основания к большему, разбивают его на отрезки 4, 1, 4. В прямоугольном треугольнике с катетом а = 4 и гипотенузой с = 5 c² = a² + h² h² = 25 - 16 h² = 9 h = 3 - высота трапеции
Площадь трапеции = полусумме оснований * на высоту
S₁ = * h S₁ = * 3 S₁ = 15 Площадь боковой поверхности усеченной пирамиды - три одинаковых грани (трапеции) S = 3S₁ = 3 * 15 = 45 (cm²)
2) (17+y)*(-3)=-51-3y
3) (2x+8)*(-4)=-8x-32
4) (-5-2y)*6=-30-12y
5) (3x+(-4))*7=21x-28
6) (x-4)*(-6)=-6x+24