ответ: для начала определим высоту куба. для этого:
площадь верхней грани куба равна 24 1/2 * 2 = 49 см2
так как у куба все грани равны между собой то длина грани равна корень из 49 = 7 см
тогда и высота 7 см
и чтобы найти объем закрашенной части куба надо площадь треугольника умножить на высоту куба:
24 1/2 * 7 = 171,5 см3
найдем общее количество стали, израсходованное на детали, для этого массу детали умножим на их количество :
14*5/8=70/8 кг
тогда чтобы найти массу остатка из общего количества стали нужно вычесть израсходованную часть, получаем:
9-70/8=72/8-70/8=2/8=1/4 кг.
пошаговое объяснение:
Введем систему координат с началом в точке отправления мяча (см. рисунок).
Запишем законы движения по осям:
(1) x (t) = v_{0x}t
(2) y(t) = v_{0y}t - frac{gt^2}{2}
По условию известна скорость в точке 1, где y=h.
Найдем время полета мяча до кольца:
y = h = v_{0y} t_1 - frac{gt_1^2}{2}
Имеем квадратное уравнение относительно t, его решения:
t_1 = frac{v_{0y} pm sqrt{v_{0y}^2-2gh}}{g}.
Скорость мяча найдем, дифференцируя уравнения (1) и (2):
(3) v_x (t) = v_{0x}
v_y (t) = v_{0y} - gt, подставим сюда выражение для времени полета, получим:
(4) v_{1y} = v_{0y} - gt_1 = sqrt{v_{0y}^2 - 2gh}.
По теореме Пифагора:
v_1^2 = v_{1x}^2 + v_{1y}^2, подставим сюда выражение (3) и (4):
v_1^2 = v_{0x}^2 + v_{0y}^2 - 2gh
Отсюда, окончательно имеем:
v_0 = sqrt{v_1^2 + 2gh}.
Подставим сюда значения из условия:
v₀ = √(9 + 2*9.8*1) = 5.3 м/с
(х-4)(х+8) = х²+8х-4х-32 = х²+4х-32