М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
deloranka
deloranka
16.12.2020 13:03 •  Математика

Вмагазине 356 кг фруктов: яблоки груши и персики. если сложить яблоки и груши, то их получится 268 кг. если сложить груши и персики, то их получится 178 кг. сколько кг каждого вида было в магазине. напишите решение и условие .

👇
Ответ:
Tess85
Tess85
16.12.2020
1) 356-268=88 (кг) персиков
2) 356-178=178 (кг) яблок
3) 356-(178+88)=90 (кг) груш
4,4(33 оценок)
Ответ:
Рита496
Рита496
16.12.2020
1)356-268=88-кг персиков
2)356-178=178-кг яблок
3)178+88=266-персиков и яблок
4)356-266=90-кг груш
ОТВЕТ 88 КГ ПЕРСИКОВ
178 КГ ЯБЛОК
90 КГ ГРУШ
4,8(86 оценок)
Открыть все ответы
Ответ:
Yulia1421
Yulia1421
16.12.2020
Докажем утверждение индукцией по числу n учеников в классе.
Для n = 3 утверждение очевидно.
Предположим, что оно верно при n ≤ N. Пусть n = N + 1.
Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух.
Выделим молчуна A и его друзей — болтунов B1, … ,Bk.
Для оставшихся n – 1 – k учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее  учеников.
Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом.
Тогда, если , то добавим к группе M болтунов B1, … ,Bm,
а если , то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A.
В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.
4,5(33 оценок)
Ответ:
kokoriki
kokoriki
16.12.2020
Докажем утверждение индукцией по числу n учеников в классе.
Для n = 3 утверждение очевидно.
Предположим, что оно верно при n ≤ N. Пусть n = N + 1.
Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух.
Выделим молчуна A и его друзей — болтунов B1, … ,Bk.
Для оставшихся n – 1 – k учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее  учеников.
Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом.
Тогда, если , то добавим к группе M болтунов B1, … ,Bm,
а если , то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A.
В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.
4,4(23 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ