Решим сначала однотипное однородное ДУ
y''+2y'+y=0
Составляем характеристическое уравнение:
k²+2k+1=0
Общее решение ОДУ:
Заметим, что "кратный корень" правой части исходного уравнения: k=0, так как справа стоит -2х (то есть многочлен)
Но при решении характеристического уравнения получились другие корни (k=-1), поэтому на частное решение это никак не повлияет.
Частное решение ДУ— это общий вид правой части:
Найдем 1 и 2-ю производные
Подставляем частное решение в исходное ДУ:
Теперь приравниваем слагаемые:
Слева перед икс стоит А, справа перед икс стоит -2, значит
А=-2
Слева свободные члены: 2А+В, справа нет свободных членов, значит 0
2A+B=0
2*(-2)+B=0
-4+B=0
B=4
Тогда
Решие данного ДУ:
28/65*13/35=13/65*28/35=1/5*4/5=4/25
Девочек 5/7*28=5*28/7=5*4=20
Зубов у свиньи 32*11/8=11*32/8=11*4=44
Зубов у кролика 16*7/4=7*16/4=7*4=28