ответ:
. дан отрезок ав. с циркуля и линейки разделите его на три равные части.
построение. 1) проведем отрезок ав;
2) из точки а проведем окружность произвольного радиуса, которая пересекает отрезок ав в точке д, а его продолжение за точку а - в точке с;
3) из точек с и д проводим окружности радиусом большим сд, пересекающиеся в точках м и n, через полученные точки проводим прямую мn, которая перпендикулярна прямой ав;
4) возьмем произвольную точку р прямой мn и проведем через нее прямую рк, перпендикулярную прямой мn; прямые ав и рк будут параллельны;
5) от начала р луча рм отложим три равных отрезка рр1, р1р2, р2р3, каждый из которых меньше отрезка ав;
6) через точки р3 и в проведем прямую, которая пересечет прямую мn в точке q;
7) проводим прямые р2q и р1q, которые и разделят отрезок ав на три равные части, аа1 = а1а2 = а2в. нетрудно доказать, используя подобие треугольников, что построенные части отрезка ав действительно равны.
пошаговое объяснение:
Верно
Пошаговое объяснение:
Простое число — натуральное (целое положительное) число, имеющее ровно два различных натуральных делителя — единицу и самого себя. ⇒ простое число не может быть четным (тогда бы оно делось на 2).
В математике есть такое правило: Произведение может быть нечетным, если все сомножители нечетны. ⇒ произведение 2=х простых чисел всегда нечетное число.
Доказательство этого правила (если нужно):
Пусть числа а и b являются нечетными. Докажем, что число n = а • b также нечетно.
a = 2k + 1, b= 2p + 1, где k и p - целые числа.
Тогда n= a • b = (2k+1) • (2p+1) = 4kp + 2k + 2p + 1 = 2(2kp + k + p) + 1 = 2s +1 (число нечетное). Если числа k и p являются целыми, то число s = 2kp + k + p - тоже целое число.
Мы доказали, что число n может быть представлено в виде n= 2s + 1, следовательно, является нечетным. Ч. т. д.
505 | 5
101 | 101
1
вроде бы так