Пошаговое объяснение:
log(2x-5)(x+1)=1/(log(x+1)(2x-5)
ОДЗ; 2x-5>0; x>2.5
x+1>0; x>-1
x+1≠1; x≠0
2x-5≠1; x≠3
Общее ОДЗ: x=(2.5;3)U(3;+∞)
теперь к неравенству, обозначу log(x+1)(2x-5)=t
t+1/t≤2
(t^2-2t+1)/t=(t-1)^2/t<=0
рассмотрим два случая
а)так как числитель положителен, то t<0
log(x+1)(2x-5)<0
т.к по одз x>2.5, основание логарифма >1
2x-5<(x+1)^0
2x-5<1
2x<6
x<3
2)когда числитель дроби равен 0, t-1=0;t=1
log(x+1)(2x-5)=t=1
2x-5=(x+1)^1
2x-5=x+1
x=6
Учитывая одз общий ответ x=(2.5;3)U{6}
4х-6х=54-78
-2х=-24
х=-24:(-2)
х=12
6х-60=2+4х
6х-4х=2+60
2х=62
х=62:2
х=31
7х-11=3х+33
7х-3х=33+11
4х=44
х=44:4
х=11