а) 1/2 : 1/4 : 1/4 = 2 : 1 : 1
4/2 : 4/4 : 4/4 = 2 : 1 : 1 (умножили на 4)
б) 1 1/3 : 1 1/2 : 1 = 8 : 9 : 6
4/3 : 3/2 : 1 = 24/3 : 18/2 : 6/1 = 8 : 9 : 6 (умножили на 6)
в) 0,5 : 1 : 1,5 = 1 : 2 : 3 (умножили на 2)
г) 4,5 : 2,7 : 1,8 = 45 : 27 : 18 (умножили на (10)
ответ: S=1/3 кв. ед.
Пошаговое объяснение:
Решая уравнение (x+1)⁴=x+1, находим x1=-1 и x2=0 - нижний и верхний пределы интегрирования. Искомая площадь S=S1-S2, где S1=∫√(x+1)*dx, а S2=∫(x+1)²*dx. Находим первообразную для S1: F1(x)=∫(x+1)^(1/2)*d(x+1)=2/3*(x+1)^(3/2)+C1, где C1 - произвольная постоянная. Отсюда S1=F1(x2)-F1(x1)=2/3 кв. ед. Находим теперь первообразную для S2: F2(x)=∫(x+1)²*d(x+1)=1/3*(x+1)³+C2, где С2 - также произвольная постоянная. Отсюда S2=F2(x2)-F2(x1)=1/3 кв. ед. и тогда S=2/3-1/3=1/3.
площадь=пи*5,3^2=88,2026