1. В)-3-8;
2. -126;
3. -18.
Пошаговое объяснение:
1.
4-12+9+(...)=-10
1+ (...) = - 10
(...) = - 10 -1
(...) = - 11.
Из приведённых выражений подходит
В)-3-8 = - 11.
2. Считаю, что в условии имеется ввиду "сумма всех целых чисел от -43 до 40 включительно:
-43 + (-42) + (-41) + (-40) + + 39 + 40 = -43 + (-42) + (-41) + (-40+40) + (- 39+39) + ... + (-2+2) + (-1+2) + 0 =
-43 + (-42) + (-41) + 0 + 0 + + 0 + 0 = - 126.
3.
-7 < х < 3
Целыми решениями неравенства являются
-6; -5; -4; -3; -2; -1; 0; 1; 2.
Их сумма
-6+(-5)+(-4)+(-3)+(-2+2)+(-1+1)+0 = -6+(-5)+(-4)+(-3) = - 18.
Раскрываем первый модуль
1) |x| - a - 7 = 10; |x| = 17 + a; ⇒ a ≥ -17 (т.к. модуль число положительное)
2) |x| - a - 7 = -10; |x| = -3 + a; ⇒ a ≥ 3 (модуль числа д.б. ≥ 0)
Решаем 1).
Раскрываем модуль
а) x = 17 + a
b) x = -17 - a
При а < -17 решения нет (см. ограничительное условие выше); при а = -17 будет одно решение; при а > -17 будет два решения.
Решаем 2).
Раскрываем модуль
а) x = -3 + a
b) x = 3 - a
При а < 3 решения нет; при а = 3 будет одно решение; при а > 3 будет 2 решения.
Объединяем решения.
а < -17 - решения нет
а = 17 - одно решение
-17 < a < 3 - два решения
а = 3 - три решения
а > 3 - четыре решения
Итак, в интервале а∈ (-17; 3) уравнение будет иметь 2 решения.