М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SAVAAVAAS
SAVAAVAAS
24.08.2020 13:32 •  Математика

Вырази в указанных единицах измерения 32ц = г

👇
Ответ:
32000 гилограммов вот столько должно
4,5(68 оценок)
Ответ:
tanyaanya200615
tanyaanya200615
24.08.2020
32ц-3200кг-3200000грамм
4,8(39 оценок)
Открыть все ответы
Ответ:
dksusjehdh
dksusjehdh
24.08.2020

Рассмотрим плоскость и прямую , заданную точкой и направляющим вектором .

Существует три варианта взаимного расположения прямой и плоскости:

1) прямая пересекает плоскость в некоторой точке ;

2) прямая параллельна плоскости: ;

3) прямая лежит в плоскости: . Да, так вот нагло взяла, и лежит.

Как выяснить взаимное расположение прямой и плоскости?

Изучим аналитические условия, которые позволят нам ответить на данный вопрос. Выполним схематический чертёж, на котором прямая пересекает плоскость:

Прямая пересекает плоскость

Прямая пересекает плоскость тогда и только тогда, когда её направляющий вектор не ортогонален вектору нормали плоскости.

Из утверждения следует, что скалярное произведение вектора нормали и направляющего вектора будет отлично от нуля: .

В координатах условие запишется следующим образом:

Если же данные векторы ортогональны, то есть если их скалярное произведение равно нулю: , то прямая либо параллельна плоскости, либо лежит в ней:

Прямая параллельна плоскостиПрямая лежит в плоскости

Разграничим данные случаи.

Если прямая параллельна плоскости, то точка (а значит, и ЛЮБАЯ точка данной прямой) не удовлетворяет уравнению плоскости: .

Таким образом, условие параллельности прямой и плоскости записывается следующей системой:

Если прямая лежит в плоскости, то точка (а, значит, и ЛЮБАЯ точка данной прямой) удовлетворяет уравнению плоскости: .

Аналитические условия данного случая запишутся похожей системой:

Разборки с взаимным расположением прямой и плоскости достаточно примитивны – всего в два шага. Кроме того, на практике можно обойтись даже без значка системы. Исследование взаимного расположения прямых в пространстве, которое проводилось на уроке Задачи с прямой в пространстве, намного трудозатратнее. А тут всё проще:

Пример 1

Выяснить взаимное расположение прямой, заданной точкой и направляющим вектором , и плоскости .

Решение: Вытащим вектор нормали плоскости: .

Вычислим скалярное произведение вектора нормали плоскости и направляющего вектора прямой: , значит, прямая либо параллельна плоскости, либо лежит в ней.

Подставим координаты точки в уравнение плоскости:

Получено верное равенство, следовательно, точка лежит в данной плоскости. Разумеется, и любая точка прямой тоже будет принадлежать плоскости.

ответ: прямая лежит в плоскости

Пример 2

Выяснить взаимное расположение плоскости и прямой .

Это пример для самостоятельного решения. Примерный образец оформления и ответ в конце урока.

После небольшой разминки мускулатуры начинаем накидывать блины на штангу:

Основные задачи на прямую и плоскость

Данная задача прям таки вертится в умах человечества, и встречается в практических задачах чаще всего. Когда я приступил к разработке пространственной геометрии, то, начиная с урока Уравнение плоскости, мне даже было немного неловко, что посетители сайта обманывались в своих ожиданиях. Многие задачи уже были, а вот этой ещё нет….

Рассмотрим прямую , которая пересекает плоскость . Требуется найти точку, в которой прямая пересекает плоскость: . Хотел разобрать задачу в общем виде, но передумал… лучше традиционный практический пример:

Пример 3

Дана прямая и плоскость . Требуется:

а) доказать, что прямая пересекает плоскость;

б) найти точку пересечения прямой и плоскости;

в) через прямую провести плоскость («омега»), перпендикулярную плоскости ;

г) найти проекцию прямой на плоскость ;

д) найти угол между прямой и плоскостью .

НеслАбо. А ведь всё началось с единственной точки пересечения =)

Решение: Сначала закрепим задачу о взаимном расположении прямой и плоскости:

а) Из уравнений прямой находим принадлежащую ей точку и направляющий вектор:

Вектор нормали плоскости, как всегда, сдаётся без боя:

Вычислим скалярное произведение:

, значит, прямая пересекает плоскость, что и требовалось доказать.

Как найти точку пересечения прямой и плоскости?

б) Найдём точку пересечения плоскости и прямой: . Не «Чёрный квадрат» Малевича, но тоже шедевр:

Как найти точку пересечения прямой и плоскости?

4,8(88 оценок)
Ответ:
esergee2012
esergee2012
24.08.2020

1

Избавься от ограничений

ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ

Ma0s

08.09.2015

Алгебра

5 - 9 классы

+50 б.

ответ дан

5x - 3y, если:

а)x = 7, y = 4;

б)х = 6,5, у = 2,1

в)х = 12 2/5, y = 9 2/3

г)х = 18, у = 7,4

5x - 5y, если x = -6,2, y = -6,02

2 1/3b - 4 + 1 2/3b, если b = 3/4

1

СМОТРЕТЬ ОТВЕТ

Войди чтобы добавить комментарий

ответ, проверенный экспертом

4,1/5

23

Montale

светило науки

564 ответов

113.7 тыс. пользователей, получивших

5x-3y

При х=7,у=4

5*7-3*4=35-12=23

При х=6,5,у=2,1

6,5*5-3*2,1=32,5-6,3=26,2

При х=12,4,у=9 2/3

12,4*5-3*9 2/3=62-29=38

При х=18,у=7,4

18*5-3*7,4=90-22,2=67,8

5х-5у

При х=-6,2 ,у=-6,02

5*(-6,2)-5*(-6,02)=-31+30,1=-0,9

2 1/3b-4+1 2/3b

При b=3/4

7/3*3/4-4+5/3*3/4=7/4-4+5/4=7/4-16/4+5/4=-9/4+5/4=-4/4=-1

В решении выполнил несколько переводов.Поясняю их.

12 2/5=12,4

2 1/3=7/3

1 2/3=5/3

4,6(14 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ