Последний столбик:
(64 - 46):18
(45+54):11
1) В задании представлены выражения двух типов: разность двух величин делится на 18, сумма двух величин делится на 11.
2) Разность двух чисел составлена так.
Уменьшаемое: число десятков уменьшается на 1 начиная с 9, а число единиц увеличивается на 1 начиная с 1.
Вычитаемое: число десятков увеличивается на 1 начиная с 1, а число единиц уменьшается на 1 начиная с 9 (вычитаемое можно рассматривать как как число, составленное из цифр уменьшаемого, переставленных местами).
Следующее выражение: (64 - 46):18.
3) Сумма чисел составлена так.
Первое слагаемое: число десятков увеличивается на 1 начиная с 1, а число единиц на 1 больше чем число десятков.
Второе слагаемое: число, составленное из цифр первого слагаемого, переставленных местами.
Следующее выражение: (45+54):11.
4) Вычисления:
(91-19)/18 = 72/18 = 4
(82-28)/18 = 54/18 = 3
(73-37)/18 = 36/18 = 2
(64-46)/18 = 18/18 = 1
_
(12+21)/11 = 33/11 = 3
(23+32)/11 = 55/11 = 5
(34+43)/11 = 77/11 = 7
(45+54)/11 = 99/11 = 9.
а) 9:3/5 > 9
б) 6:7/6 < 6
в) 9/11:7/19 > 9/11
г) 1 1/8:3/8 > 1 1/8.
Пошаговое объяснение:
Если предположить, что в задании нужно было сравнить значения, то решение следующее.
Правило 1
При делении положительного числа на правильную дробь в результате получим число, большее исходного.
(Действительно, при делении на 2/3, например, мы заменяем это действие умножением на неправильную дробь 3/2, а она больше единицы, поэтому и результат становится больше, чем первоначальное делимое).
Правило 2
При делении положительного числа на неправильную дробь в результате получим число, меньшее исходного.
В нашем случае
а) 9:3/5 > 9 , т.к. дробь 3/5 правильная
б) 6:7/6 < 6, т.к. дробь 7/6 неправильная
в) 9/11:7/19 > 9/11, т.к. дробь 7/29 правильная.
г) 1 1/8:3/8 > 1 1/8, т.к. дробь 3/8 правильная.