140√83 м²
Объяснение:
Проведём в равнобедренном треугольнике высоту к его основанию. Высота в прямоугольом треугольнике является также и медианой (делит основание пополам), и биссектрисой (делит угол пополам). Получилось два одинаковых прямоугольных треугольников с одним углом в 30° и гипотенузой, равной 18 м. Если в прямоугольном треугольнике есть угол, равный 30°, то противолежащий этому углу катет равен половине гипотенузы. Значит, высота равнобедренного треугольника равна половине его боковой стороны:
h = 18 / 2 = 9 м.
Найдём неизвестный катет в прямоугольном треугольнике по теореме Пифагора:
a² + b² = c²;
a² + 9² = 18²;
a² + 81 = 324;
a² = 243;
a = √243.
Найдём основание равнобедренного треугольника:
2 * а = 2√243;
Найдём площадь треугольника:
S = 1/2 * 9 * 2√243 = 4,5 * 2√243 = 9√243 = √(81 * 243) = √19683 = 140√83 м².
ответ: 140√83 м²
(200 + 200) + (360 - 80) = 400 + 280 = 680
(192 - 6) + 250 = 186 + 250 = 436
1000 - (500 + 120) = 1000 - 620 = 380
900 - (600 - 300) = 900 - 300 = 600
(450 + 90) - 100 = 540 - 100 = 440
Выделенное - выражения.