Рисуем треугольник. Катеты 8 и 15. находим по теореме Пифагора гипотенузу для выявления радиуса вписанной окружности = 8^2 + 15^2 = 289 = 17^2. r = (a +b - c)/2 = 3.
Центр вписанной окружности соединяем с вершинами, а также проводим перпендикуляры к катетам и гипотенузе. Потом видно, что два треугольника равные по общей стороне и прямому углу. Также замечаем квадрату прямого угла треугольника, а его стороны равны радиусу вписанной окружности = 3. То есть, одна сторона уже известна - 5.
Признак 1: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство: Через точку К - середину отрезка секущей - проведем перпендикуляр к прямой b - КН, продлим его до пересечения с прямой а. АК = КВ, так как К середина АВ, углы при вершине К равны как вертикальные, ∠КВН = ∠КАН' по условию, ⇒ ΔВКН = ΔАКН' по стороне и двум прилежащим к ней углам. Значит ∠АН'К = ∠ВНК = 90°. Обе прямые а и b перпендикулярны третьей прямой НН', значит они параллельны.
Признак 2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Доказательство: ∠1 = ∠2 по условию (соответственные углы) ∠3 = ∠1 как вертикальные, ⇒ ∠2 = ∠3, а это накрест лежащие углы, значит прямые параллельны по первому признаку.
Признак 3: Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Доказательство: ∠1 + ∠2 = 180° по условию (односторонние углы), ∠2 + ∠3 = 180° так как эти углы смежные, значит ∠1 = ∠3, а это накрест лежащие углы, значит прямые параллельны по первому признаку.
40,200,350
Пошаговое объяснение: