Пошаговое объяснение:
Заметим, что если x - корень уравнения, то (-x) - тоже корень. Чтобы корней получилось нечетное число, один из корней должен быть нулем. Подставляем x = 0:
Проверяем, удовлетворяют ли условию найденные a. Для этого достаточно проверить, что при подстановке найденных a уравнение имеет ровно один положительный корень.
1) a = -1:
Рассмотрим функцию . Её производная
принимает неотрицательные значения при
и неположительные значения при
. Значит, график функции f(x) при x > 0 выглядит примерно так, как изображено на рисунке: при x, близких к 0, значение близко к 0, затем убывание, в точке
принимается минимальное значение
, потом неограниченное возрастание.
Значит, у уравнения есть два положительных корня, не подходит.
2) a = 0: аналогично, можно свести к уравнению f(x) = 0, у него один положительный корень x = 1. Подходит!
3) a = 2: аналогично, сводится к уравнению . У этого уравнения тоже только один положительный корень
.
5/16 + 2/3
Приводим к общему знаменателю 48:
5*(48/16)/48 + 2*(48/3)/48 = 15/48 + 32/48 = 47/48
ответ: 47/48
2)
1/14+1/4
Приводим к общему знаменателю 28:
1*(28/14)/28 + 1*(28/4)/28 = 2/28 + 7/28 = 9/28
ответ: 9/28