Лемма ученика 57 школы: 1+2+4+8+...+2^n= 2^(n+1)-1
Докажем по индукции:
База:
1 = 2-1
1+2 = 3 = 4-1
Шаг:
пусть для какого-то i верно, что 1+2+4+8+...+2^i=2^(i+1)-1
тогда 1+2+4+8+...+2^i+2^(i+1)=2^(i+1)+2^(i+1)-1=2^(i+2)-1
ч.т.д.
Теперь заметим, что если у нас есть 2^101 монет, то нам потребуется 101 взвешивание т.к. за 1 взвешивание мы отсекаем не больше половины монет.
Теперь заметим, как мы сможем взвесить 2^100+2^99+2^98++2+1
Взвесим первые 2^100 монет, разбив их на 2 кучки.
Если кучки весят одинаково(все монеты настоящие), то берем следующие 2^99, 2^98, и т.д.
Если первые 2+4+8+...2^100 монет настоящие, то последняя монета - фальшивая. пусть на i шаге нашлась кучка из 2^(100-i) монет, среди которых есть ненастоящяя. тогда у нас есть еще (100-i) взвешиваний, и мы сможем определить фальшивую монету.
По лемме ученика 57 школы 1+2++2^100= 2^101-1
а 2^101 монет быть не может.
ответ:2^101-1
x + [y] + {z} = 1,2
{x} + y + [z] = 3,4
[x] + {y} + z = 4,6
Если сложить все три уравнения, то получится по одному слагаемому x, y и z + их целые и дробные части. Целая + дробная часть равна самому числу. Поэтому получится 2x + 2y + 2z = 9,2, или x + y + z = 4,6.
Приравняем это к третьему уравнению:
x + y + z = [x] + {y} + z = 4,6
x + y = [x] + {y} = 4,6
{x} + [y] = 4,6
С другой стороны, 4,6 = 1,2 + 3,4, то есть
{x} + [y] + x + y + z = 4,6
Но x + y + z = 4,6, значит {x} + [y] = 0.
Т.к x > 0 и y > 0 и z > 0, то
{x} = 0
{x} - целое число
[y] = 0
0 < y < 1
Из первого уравнения системы:
x + [y] + {z} = 1,2
Но [y] = 0, поэтому
x + {z} = 1,2
[x] + {x} + {z} = 1,2
{x} = 0, поэтому
[x] + {z} = 1,2
Т.к x > 0 и y > 0 и z > 0, то x = 0 или 1.
0 не может быть, т.к {z} < 1.
Значит [x] = 1 и x = 1, а {z} = 0,2
Из второго уравнения системы:
{x} + y + [z] = 3,4
y + [z] = 3,4
Т.к [y] = 0, то y = 0,4, а [z] = 3.
Все переходы равносильные, поэтому решение единственное
ответ: (1, 0,4, 3,2)
30-20=10
10*4,5=45
(90+45)-100= 135-100=35
Вроде бы так.