Полученное произведение включает в себя три последовательных натуральных числа: (n - 1)*n*(n + 1) Из трех последовательных натуральных чисел одно обязательно делится на 3, следовательно и все произведение будет кратно трем. Из этих же трех последовательных натуральных чисел, как минимум, одно будет четным, следовательно и все произведение будет четным, т.е. кратным двум, независимо от величины (n + 3). Таким образом, мы доказали, что исходное выражение кратно трем и, одновременно, кратно двум при любом натуральном n, следовательно, оно делится на 6, что и требовалось доказать.
P.S. Для случая минимального натурального n = 1 все выражение обращается в нуль. Так как при делении нуля на любое (не обязательно натуральное) число получается нуль (целое число), то можно утверждать, что нуль кратен любому числу, в том числе и шести.
Площадь прямоугольника вычисляется по формуле S = a*b. Периметр прямоугольника вычисляется по формуле P = 2*(a+b) ДАНО S= 36 НАЙТИ P=? РЕШЕНИЕ По условию размеры в целых сантиметрах. (Начинаем с а=1) Вторая сторона вычисляется по формуле b = S/a = 36/a Рассмотрим варианты и заносим в таблицу a=1, b = 36 P=2*(1+36)= 74 a=2, b = 18, P=2*20=40 a=3, b = 36/3=12, P=2*(3+12)=30 a=4, b=9, P=2*13=26 a=5, b=36/5 = 7.2, P=2*12.2= 24.4 a=6, b=6, P=24 - квадрат - имеет минимальный периметр. Продолжаем расчет a= 7, b= 36/7~5.14, P~24.3 a=8, b= 4.5, P=25 a=9, b=4, P=2*13 = 26 a=10, b=3.6, P=27.2 a=11, b~3.27, P~28.6 a=12, b=3, P= 30. a=18, b=2, P=40.
для интереса построил график - интересно получилось Уменьшается быстро, а растет медленно.
Решение: 1) Пусть в 3-ем пакете - 1 часть орехов. Тогда в первом - в 2 раза больше, чем в третьем, т.е. 1 * 2 = 2 части орехов. Во втором пакете - в 2 раза больше, чем в первом, т.е. 2 * 2 = 4 части орехов. Таким образом, мы имеем 1 + 2 + 4 = 7 частей орехов. 2) 140 : 7 = 20 (орех.) - столько приходится на 1 часть орехов и столько же находится в третьем пакете. 3) 20 * 2 = 40 (орех.) - столько находится в первом пакете. 4) 40 * 2 = 80 (орех.) - столько находится во втором пакете. Проверка: 20 + 40 + 80 = 140 (орех.)
n⁴ + 3n³ - n² - 3n = n(n³ + 3n² - n - 3) = n(n + 3)(n + 1)(n - 1)
Полученное произведение включает в себя три последовательных натуральных числа:
(n - 1)*n*(n + 1)
Из трех последовательных натуральных чисел одно обязательно делится на 3, следовательно и все произведение будет кратно трем.
Из этих же трех последовательных натуральных чисел, как минимум, одно будет четным, следовательно и все произведение будет четным, т.е. кратным двум, независимо от величины (n + 3).
Таким образом, мы доказали, что исходное выражение кратно трем и, одновременно, кратно двум при любом натуральном n, следовательно, оно делится на 6, что и требовалось доказать.
P.S. Для случая минимального натурального n = 1 все выражение обращается в нуль. Так как при делении нуля на любое (не обязательно натуральное) число получается нуль (целое число), то можно утверждать, что нуль кратен любому числу, в том числе и шести.