Обозначим катеты за a = 9 см, b = 12 см , гипотенузу за c, высоту за h, проекции катетов на гипотенузу за ca и ba.
Исходя из т. Пифагора, следует:
Найдет площадь прямоугольного треугольника:
Воспользуемся формулой площади треугольника через высоту и выразим из нее высоту:
Проекции катетов будут равны:
или
—————————————————————————————
Высоту и проекции катетов также можно найти через пропорциональные отрезки в прямоугольном треугольнике:
– высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу:
– катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу:
—————————————————————————————
ответ: гипотенуза равна 15 см, высота — 7,2 см, проекции катетов — 5,4 см и 9,6 см.
m × n = m + n + 2017
m × n - m - n = 2017
m (n - 1) - n = 2017
m (n - 1) - n + 1 - 1 = 2017
m (n - 1) - (n - 1) = 2018
(n - 1) (m - 1) = 2 × 1019 (других вариантов разложения на простые множители числа 2018 просто нет, т.к. числа д.б. натуральными)
Следовательно, n - 1 = 2; m - 1 = 1009 (или наоборот, что неважно).
Итак, n = 3, m = 1010, а их произведение m × n = 3030
Проверка:
3030 = 1010 + 3 + 2017
ответ: 3030