М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LonFostYT
LonFostYT
08.11.2022 07:10 •  Математика

Найди значения разностей : 9-1= 9-8=

👇
Ответ:
denisfilin2
denisfilin2
08.11.2022
9-1=8
9-8=1
1+8=9
8+1=9 
9-1>9-8
4,8(45 оценок)
Ответ:
ника5010
ника5010
08.11.2022
9 - 1 = 8
9 - 8 = 1
Это точно
4,5(4 оценок)
Открыть все ответы
Ответ:
Lana0602
Lana0602
08.11.2022

(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

Пошаговое объяснение:

ОДЗ логарифмов: x > 0, x ≠ 1, x > 2, x ≠ 3 ⇒ x > 2, x ≠ 3

Пусть \log_{x}{(x-2)}=t. Тогда \log_{x-2}{x}=\dfrac{1}{\log_{x}{(x-2)}}=\dfrac{1}{t}:

\dfrac{4t+\frac{1}{t}-4}{4t+\frac{2}{t}+6}\geq 0. Заметим, что t ≠ 0, так как это значение достигается только при x = 3 (x - 2 = x⁰ = 1 ⇔ x = 3). Но при x = 3 основание логарифма \log_{x-2}{x} равно 1, что не удовлетворяет ОДЗ. Значит, домножим обе части дроби на t:

\dfrac{4t^2-4t+1}{4t^2+6t+2}\geq 0|\cdot 2\\\dfrac{4t^2-4t+1}{2t^2+3t+1}\geq 0\\\dfrac{(2t-1)^2}{(t+1)(2t+1)}\geq 0

Решим методом интервалов:

 +      -    +     +

----o----o----*---->

   -1    -¹/₂   ¹/₂  

t\in(-\infty;-1)\cup(-\frac{1}{2};+\infty)

\displaystyle\left [ {{\log_{x}{(x-2)}-\frac{1}{2}}} \right.

Заметим, что по ОДЗ x > 2, то есть основание логарифма всегда больше 1. Значит, на ОДЗ неравенства равносильны:

\displaystyle \left [ {{x-2x^{-\frac{1}{2}}}} \right. \left [ {{x-2\frac{1}{\sqrt{x}}}} \right. \left [ {{x^2-2x-10}} \right.

Первое неравенство имеет решение (с учётом ОДЗ) x\in(2;1+\sqrt{2})

Второе неравенство раскладывается на множители:

(\sqrt{x}+1)(\sqrt{x}^2-\sqrt{x}-1)0|:(\sqrt{x}+1)0\\\sqrt{x}^2-\sqrt{x}-10

Нули получившегося неравенства: \displaystyle \left [ {{\sqrt{x}=\frac{1-\sqrt{5}}{2}

C учётом ОДЗ получаем, что в данном случае x\in(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty) (левая граница меньше правой, так как √5 < 3).

Объединим промежутки. Сравним правую границу первого неравенства и левую границу второго. Сравним эти числа относительно 2,5:

1+\sqrt{2}\vee 2{,}5\Leftrightarrow\sqrt{2}\vee1{,}5\Leftrightarrow 24\\1+\sqrt{2}

Тогда промежутки не пересекаются, итоговый ответ: x\in(2;1+\sqrt{2})\cup(\dfrac{3+\sqrt{5}}{2};3)\cup(3;+\infty)

4,5(60 оценок)
Ответ:
Егорик69
Егорик69
08.11.2022

Относится это растение к высоким кустарниковым либо к невысоким (до 10 метров) деревьям. Словно красавица-невеста, она надевает белое одеяние во время цветения (май-июнь) и превращается в какое-то чудо. В июле — августе появляются плоды, ягодки диаметром от 8-ми до 10-ти миллиметров, по мере созревания превращаются из зелёного в красный, и в конце - в чёрный цвет. В народе бытует такое мнение - расцвела черёмуха - жди холодов. Это обусловлено тем, что погодные периоды совпадают со временем цветения черёмухи.

4,8(60 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ