Задание № 1:
Сколько существует различных шестизначных чисел, у которых третья цифра 3, пятая цифра 5, а остальные цифры чётные? Цифры в записи числа не должны повторяться.
на первом месте любая четная цифра кроме нуля (2468) - 4 варианта
на втором месте любая четная цифра (02468), кроме одной использованной раньше - 4 варианта
на четвертом месте любая четная цифра (02468), кроме двух использованных раньше - 3 варианта
на шестом месте любая четная цифра (02468), кроме трех использованных раньше - 2 варианта
4*4*3*2=96
ответ: 96
Квадратный корень из отрицательного числа не существует
Пошаговое объяснение:
3х^2 + 2х + 2 = 0
D = 4 - 4 × 3 × 2 = 4 - 24 = -20