На сторонах правильного треугольника авс выбраны точки n m и l таким образом что nm перпендикулярен bc, ml перпендикулярен ав и ln перпендикулярен ас. площадь треугольника авс равна 36. чему равна площадь lmn?
Так как треугольник правильный, то все его углы равны 60°. Рассмотрим треугольник MLB. Угол LBM=60°, тогда угол BML=30°. Пусть LB=х. Тогда MB=2х, так как катет, лежащий против угла в 30°, равен половине гипотенузы. По теореме Пифагора найдем ML: Сторона исходного треугольника равна: По построению, треугольник LMN правильный, значит он подобен с треугольником ABC. Площади подобных треугольников относятся как квадрат коэффициента пропорциональности: ответ: 12
Y'=1-3x² - это производная 1-3x²=0 3x²=1 x²=1/3 х=+-1/√3 или (√3)/3 (это примерно 0,58) Воспользуемся методом интервалов. Начерти прямую, отметь на ней две точки, левую подпиши ее -1/√3, а правую 1/√3. Это точки экстремумов. Подставь в формулу производной число, которое меньше -1/√3 (например, -1): y'(-1)=1-3=-2. Слева от точки -1/√3 поставь минусик. Теперь подставь значение между -1/√3 и 1/√3 (например, 0). y'(0)=1 (т.е. >0). Между точками ставь плюсик. Теперь значение, которое больше 1/√3, например 1. y'(1)=1-3=-2. Снова отрицательное значение. Справа от точки 1/√3 ставь минус.
На тех промежутках, где у нас стоит плюс, функция непрерывна и возрастает (это промежуток от -1/√3 до 1/√3). Над плюсом можем поставить стрелочку, ведущую вверх (как бы в горку). С минусами - обратная картина - на этих промежутках функция убывает. Над минусами ставим стрелочку "с горки". У нас получилась такая картина: стрелочки вниз - вверх - снова вниз. Т.е. точка -1/√3 оказалась точкой минимума, а 1/√3 - точкой максимума функции. Всё!
Рассмотрим треугольник MLB. Угол LBM=60°, тогда угол BML=30°.
Пусть LB=х. Тогда MB=2х, так как катет, лежащий против угла в 30°, равен половине гипотенузы. По теореме Пифагора найдем ML:
Сторона исходного треугольника равна:
По построению, треугольник LMN правильный, значит он подобен с треугольником ABC.
Площади подобных треугольников относятся как квадрат коэффициента пропорциональности:
ответ: 12