1) 2^8+4^5-8^2=2^8+(2^2)^5-(2^3)^2=2^8+2^10-2^6=2^6*(2^2+2^4-1)=2^6*(4+16-1)=2^6*19=2^5*(2*19)=2^5*38 это выражение делится на 38
(2^5*38)/38=2^5=32 что требовалось доказать
2) 3^11+9^6+27^3=3^11+(3^2)^6+(3^3)^3=3^11+3^12+3^9=3^9*(3^2+3^3+1)=3^9*(9+27+1)=3^9*37=3^8*(3*37)=3^8*111 это выражение делится на 111
(3^8*111)/111=3^8 что требовалось доказать
3) a=9^7+9^6+9^5=(3^2)^7+(3^2)^6+(3^2)^5=3^14+3^12+3^10=3^10*(3^4+3^2+1)=3^10*(81+9+1)=3^10*91.
b=3^10-3^9+3^8=3^8*(3^2-3+1)=3^8*(9-3+1)=3^8*7
(3^10*91)/(3^8*7)=3^2*91/7=9*13=117 что и требовалось доказать а делится на bПошаговое объяснение:
1)p - ?
n = 50
кр=22
син = 16
зел = 12
р=m/n
p = 22/50
p = 0,44
2)Рассмотрим самый неблагоприятный случай. Три раза мы вытаскиваем носки разного цвета черный, красный, белый (порядок неважен). На четвертый раз будем обязательно иметь пару носков и неважно какого цвета носок мы извлечем. ответ: 4 носка.
3)?
4)События могут быть такие: 1)герб, герб; 2) герб, решка;
3) решка, герб; 4) решка, решка.
Всего исходов испытания 4, из них благоприятный только 1, поэтому вероятность равна 1 : 4 = 0,25
ответ: 0,25
Варианты: 1 и 17, 2 и 16, 3 и 15, 4 и 14, 5 и 13, 6 и 12, 7 и 11, 8 и 10, 9 и 9.