1) 20 и 120 2) 12 и 17
Пошаговое объяснение:
Задание 1!
Пусть одно число - а, другое b. Составим систему:
а=6b (т.к одно число больше другого в 6 раз) и
а+b=140 (т.к сумма чисел равна 140)
отсюда получаем:
а=140-b (Подставим это в первое выражение)
140-b=6b
140=7b
b=20. Возвращаемся к утверждению (а+b=140) и получаем:
а+20=140 следует, что а=120
ответ: а=120; b=20
Задание 2!
Пусть один моток проволки - а, другой b. Составим систему:
а=b+5 (т.к один моток больше другого на 5 метров) и
а+b=29 метров
Отсюда следует, что b+5+b=29
2b=24 и b=12 метрам. Т.к а+b=29, а=17 метрам
ответ: 12 и 17 метров
На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.
Начнем с систематизации и повторения.
На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь необходимо проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.
Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.
Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.
Линейное уравнение первого порядка в стандартной записи имеет вид:
Что мы видим?
1) В линейное уравнение входит первая производная .
2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».
3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от «икс». В частности, может быть константой.
Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.
Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.
– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:
– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .
1мм×100=1дм
1мм×1000=1м
1мм+9мм=1см
1см×10см=1дм
1дм+8дм+1дм=1м
1м×1000=1км