К+В=50 1) В+М=45 2) К+М=25 3) Это система из 1) вычтем 2) К-М=5,прибавим 3) получим К-М+К+М=30 2К=30 К=15 Далее из системы получаем В = 50 - К=50 - 15 = 35 М=25-К=25-15=10 М=10 В=35 К=15 Вот и всё
1. Гипотенуза АВ=10 ( по теореме Пифагора AB²=6²+8²) S (Δ ABC)=(1/2)AC·BC=(1/2)·6·8=24
CK- высота из вершины прямого угла S (Δ ABC)=(1/2)AB·CK 24=(1/2))AB·CK CK=48/10=4,8
По теореме Пифагора DK²=DC²+CK²=4,8²+4,8²=2*4,8² DK=4,8·√2 О т в е т. 4,8·√2 2. Треугольник АВС - равнобедренный (АВ=АС). ∠ВАС=60° Углы при основании равны каждый угол равен (180°-60°)/2=60°. Значит Δ АВС - равносторонний ВС=АВ=АС=5 ΔBDC- прямоугольный, равнобедренный (BD=CD- проекции равных наклонных равны) BD=DC=BC·sin45°=(5√2)/2 По теореме Пифагора AD²=AB²-BD²=5²-((5√2)/2)²=25-(25/2)=(25/2) AD=(5√2)/2 О т в е т.(5√2)/2 3. MM₁-средняя линия трапеции А₁АВВ₁ ( АА₁|| BB₁) MM₁=(AA₁+BB₁)/2=(3+17)/2=10 м О т в е т. ММ₁=10 м
Если заданы координаты вершин А,В,С Находим уравнение сторон АВ, ВС, АС через уравнение пряммой что проходит через две точки либо через систему двух линейных уравней используя формулу пряммой с угловым коэффициентом (нужно про себя отдельно віделить возможный уникальный случай когда одна из пряммых получается x=c, где с - некоторое действительное число)
Дальше используя признак перпендикулярности пряммых, по угловому коэфициенту пряммой стороны k находим углововй коєфициент высоты опущеной на эту сторону как (-1/k) - признак перпендикулярности на плоскости
А дальше используя координаты вершины с которой опущена высота , и угловой коэфициент через формулу пряммой с угловым коэфициентом находим уравнение высоты.
Решив систему уравнений, где уравнения - уравнения формул задающих пряммые высот - найдем точку пересечения высот
2. Для медиан. Находим середины сторон по формулах координат середины отрезки Потом используем формулу пряммой проходящей через две тчоки либо системой линейных уравнеий через формулу пряммой с угловым коэффициентом, имея координаты вершины треугольника и соотвестующей середины противоположной стороны - уравнения медиан
Имея уравнеия медиан через систему уравнений находим точку пересечения медиан. (Либо найдя одну из середин сторон и координаты соотвествующей вершины памятуя что медианы делятся точкой пересечения в отношении 2:1, использовать формулу координат точки делящей отрезок в заданном отношении - но это уже на любителя)
В+М=45 2)
К+М=25 3)
Это система
из 1) вычтем 2)
К-М=5,прибавим 3)
получим К-М+К+М=30
2К=30
К=15
Далее из системы получаем В = 50 - К=50 - 15 = 35
М=25-К=25-15=10
М=10
В=35
К=15
Вот и всё