3 и 12
Пошаговое объяснение:
Количество ребер в полном графе считается по формуле: n(n-1)/2. Где n - количество вершин. (простыми словами, чтобы построить ребро нам нужно 2 вершины; у нас n вариантом для первой вершины и n-1 для второй(можно взять любую кроме взятой первой). Их произведение надо поделить пополам, потому что мы посчитали вариант когда брали сначала вершину А, а потом вершину Б, и вариант когда сначала брали вершину Б, а потом А. Но ребро АБ и ребро БА это одно и тоже ребро. Т.е. мы все ребра посчитали дважды, поэтому и делим на 2.)
Таким образом, если в полном графе G было n вершин, а значит n(n-1)/2=28. Откуда n = 8.
Пусть в полном графе G' было х ребер. Тогда (х + 8)(х + 8 - 1)/2=55. Откуда х = 3.
Аналогично, отвечаем на второй вопрос. Чтобы провести ребро между графом G и графом G', из первого мы можем выбрать любую из 8 вершин, а из второго любую из 3. Их произведение также нужно поделить пополам получим 8*3/2= 12.
11 1/13 и 8 8/17
Пошаговое объяснение:
Скорее всего сначала 1-й экскаватор выроет самостоятельно 1/4 котлована.
Котлован примем за единицу.
4 ч 48 мин = (4 + 48/60) ч = 24/5 ч
x - время, необходимое, чтобы вырыть котлован 1-му экскаватору, ч.
y - время, необходимое, чтобы вырыть котлован 2-му экскаватору, ч.
1/(24/5)=5/24 - производительность двух экскаваторов.
1 -1/4=4/4 -1/4=3/4 - оставшаяся часть котлована.
Система уравнений:
1/x +1/y=5/24
1/(4x) +3/(4y)=1/9 |×4
1/x +3/y -1/x -1/y=4/9 -5/24
2/y=32/72 -15/72
y=2/(17/72)
y=144/17; y=8 8/17 ч - время, необходимое, чтобы вырыть котлован 2-му экскаватору.
1/x +1/(144/17)=5/24
1/x=5/24 -17/144
1/x=30/144 -17/144
x=1/(13/144)
x=144/13; x=11 1/13 ч - время, необходимое, чтобы вырыть котлован 1-му экскаватору.
2у-7=7+7,2у-3,6
2у-7=3,4+7,2у
2у-7,2у=3,4+7
-5,2у=10,4
у=-2