Пошаговое объяснение:
а) НОД(8,4)=2*2*2=8
НОД(8,6)=2
НОД(8,10)=2;
НОД(8,12)=2*2=4
НОД(8,15)=1
8=2*2*2; 4=2*2; 6=2*3; 10=2*5; 12=2*2*3; 15=3*5
б) НОД(15, 3)=3
НОД(15, 25)=5
НОД(15, 35)=5
НОД(15, 42)=1
НОД(15, 53)=1
15=5*3; 3=3; 25=5*5; 35=5*7; 42=2*3*7; 53=53
в) НОД(11, 7)=1
НОД(11, 10)=1
НОД(11, 55)=11
НОД(11, 121)=11
НОД(11, 333)=1
11=11; 7=7; 10=2*5; 55=5*11; 121=11*11; 333=3*3*37
г) НОД(14, 6)=2
НОД(14, 28)=2*7=14
НОД(14, 21)=7
НОД(14, 35)=7
НОД(14, 997)=1
14=2*7; 6=2*3; 28=2*2*7; 21=3*7; 35=5*7; 997=997 (997 не делится нацело ни на 2 ни на 7)
Для начала можно сосчитать сколько всего конфет у Пети:
9 лимонных плюс 8 вишнёвых плюс 7 мятных плюс 6 клубничный - всего получается ровно 30 конфет.
Во-первых, пакетиков должно быть больше 8 иначе, как минимум в один из них придется положить вторую лимонную конфету, которых у Пети больше всего.
Во-вторых, число пакетиков должно быть таким, на которое все 30 конфет можно разделить поровну и без остатка. То есть в данной ситуации пакетиков может быть 10, 15 или 30, а значит по условию нам подходит только 10, как самое маленькое количество.
Ну, а распределять конфеты по пакетиком очень просто:
в девять пакетиков раскладываем по одной лимонной конфете;
в десятый пакетик положим одну вишнёвую;
7 оставшихся вишнёвых конфет по одной раскладываем в первые семь пакетиков, а в 3 оставшихся пакетика добавим по одной мятной;
Оставшиеся мятные конфеты опять же по одной раскладываем в первые 4 пакета, а в остальные 6 пакетов по одной раскладываем 6 клубничных конфет.
В общем, Петя может собрать минимум 10 пакетов, с тремя разными и не повторяющимися конфетами в каждом.
7×2=14км-проедет Коля за 2ч
6+3=9км-Юра за 3ч.
14+7=21км-Коля за 3ч.