1)НОД=10
2) НОК= 2
Пошаговое объяснение:
Разложим на простые множители 30
30 = 2 • 3 • 5
Разложим на простые множители 40
40 = 2 • 2 • 2 • 5
Выберем одинаковые простые множители в обоих числах.
2 , 5
Находим произведение одинаковых простых множителей и записываем ответ
НОД (30; 40) = 2 • 5 = 10
2)Разложим на простые множители 12
12 = 2 • 2 • 3
Разложим на простые множители 50
50 = 2 • 5 • 5
Выберем одинаковые простые множители в обоих числах.
2
Находим произведение одинаковых простых множителей и записываем ответ
НОД (12; 50) = 2 = 2
Пошаговое объяснение: №1 ΔКОL-прямоугольный, т.к. радиус ОК⊥КL (касательная перпендикулярна радиусу, проведённому в точку касания), ⇒КL= OK·tg60° = 6·√3 №2. Δ ОMN -прямоугольный, т.к. радиус ОN⊥MN (касательная перпендикулярна радиусу, проведённому в точку касания), по условию ON=1/2 ·OM (9=1/2 ·18) ⇒∠NMO=30° (по св-ву катета, лежащего против угла в 30°), ⇒∠NMK =30°·2=60° (по св-ву касательных, проведённых из одной точки к окружности). №3. ΔОАВ -равносторонний, т.к. ОА=ОВ=R(радиусы окружности), а ОА =АВ по условию, ⇒ОА=ОВ=АВ, ⇒все углы треугольника равны по 60°, ⇒∠ОАВ=60°. ∠ОАС=90° (касательная перпендикулярна радиусу)⇒∠ВАС=90°-60°°=30°. №4 ΔОАВ -равносторонний, т.к. ОА=ОВ=R(радиусы окружности), а ОА =АВ по условию, ⇒ОА=ОВ=АВ, ⇒все углы треугольника равны по 60°, ⇒∠ОАВ=60°. ∠ОАС=90° (касательная перпендикулярна радиусу)⇒∠ВАМ=90°-60°°=30°. Но ΔАМВ равнобедренный (по св-ву касательных, проведённых из одной точки М)⇒∠АВМ=∠∠ВАМ=30°, тогда ∠АМВ= 180° -(30°+30°)= 120°.
Пример:
Допустим: х: х=х: х по бокам крайние по середине средние члены пропорции.