ну, в первой загадке вы опечатались в условии, похоже:
должно быть так: "через точку а к окружности w (0,r)проведены". а то выходит, что а принадлежит окружности, при этом через нее аж две касательные
ну а доказывать, полагаю, надо через равенство треугольников, образующихся при соединении этой точки а с центром окружности и радиусов, проведенных к точкам касания в и с.
треугольники аво и асо:
во-первых, прямоугольные. (углы в и с прямые, ибо радиус к точке касания перперндикулярен касательной);
во-вторых, имеют равные катеты ов и ос (длина их - радиус окружности);
в-третьих - у них равные гипотенузы (она у них общая, это отрезок ао);
значит они равны (по углу и двум сторонам)
следовательно ав=ас.
согласны?
а вот что думаю про вторую :
раз угол прямой, то, соединив отрезками точки касания с центром окружности, получим симпатичный квадрат, диагональ которого - та самая хорда.
ну, а у квадрата диагонали равны и перпендикулярны друг другую.
значит проводим вторую диагональ (она как раз из центра к хорде под прямым углом пойдет) и сразу становится видно, что расстояние от хорды то центра окружности окружности - ровно половина диагонали, т.е.
40/2 = 20см
ура?
))
второй трубой - х*2
Третьей - у
Весь бассейн объемом 1
тогда
1/(х+2х+у)=8/11
1/х=4
х+2х+у=11/8
х=1/4
1/4 +2/4+у=11/8
у=11/8 -3/4=5/8 скорость третьей трубы.
Найдем время наполнения бассейна третьей трубой
1/у=1/(5/8)=8/5 часа.=1час 36 минут
проверка:
1/(1/4 + 2/4 + 5/8)=8/11