Для начала, надо вычислить количество всех возможных расстановок этой пары объектов среди 6 качественных: при одном выборе первого объекта второй объект может быть выбран 5 раз(00,0-0---,0--0--,0---0-,00) при другом выборе первого объекта второй объект может быть выбран 4 раза (-00---,-0-0--,-0--0-,-0---0), и так до 1. То есть, количество возможных выборов из 6 качественных равно 1+...+(6-1). -1, потому что при одном выборе первого объекта он уже занят, значит второй в этом случае выбирается среди 6-1, а не 6.
Важно:
1+2+...+n=n(n+1)/2
Значит, кол-во возможных выборов из качественных - 15=(6-1)((6-1)+1)/2.
Так же можно вычислить кол-во возможных выборов среди всех (тоже с учётом -1): (10-1)((10-1)+1)/2=45. Значит, кол-во выбора ХОТЯ БЫ одного некачественного - 45-15=30.
Вероятность:
30/45=2/3=0,(6)=66,(6)%
ответ: 66,(6)%
Пошаговое объяснение:Если не правильно извини.Я просто скопировала задачку и нашла в интернете
Решаем первое уравнение и находим значение х
-3(х - 2,5) - 4 = 1,5
-3х + 7,5 - 4 = 1,5
-3х = 1,5 + 4 - 7,5
-3х = -2
х = -2 : (-3)
х = 2/3 - корень уравнения
Подставляем значение х во второе уравнение и находим значение а
6х - 2а = 3х - 4
6 · 2/3 - 2а = 3 · 2/3 - 4
4 - 2а = 2 - 4
4 - 2а = -2
-2а = -2 - 4
-2а = -6
а = -6 : (-2)
а = 3
ответ: 3.
Проверка: при а = 3
6х - 2а = 3х - 4
6х - 2 · 3 = 3х - 4
6х - 6 = 3х - 4
6х - 3х = 6 - 4
3х = 2
х = 2 : 3
х = 2/3 - корень уравнения (первое и второе уравнения имеют один и тот же корень, то есть являются равносильными).
Решение во вложении
Пошаговое объяснение:
Решение во вложении