Пошаговое объяснение:
Воспользуемся формулой
и рассмотрим вероятность того что на каждом уровне сошло по 1 посетителю
Р=m/n, где
n= количество которыми все 7 посетителей могут выйти на любых этажах
n=7*7*7*7*7*7*7=7⁷
m- количество выхода людей
m=7*6*5*4*3*2*1=5040
Р=5040/7⁷
"по крайней мере, двое сошли на одном уровне".
Событие «по крайней мере, двое сошли на одном этаже» противоположно событию «все сошли на разных этажах». Воспользуемся формулой вероятности противоположного события :
Р(А)=1- Р(А)
Р(А)= 1- 5040/7⁷= 1-5040/823543=116929/117649≈0,9939
Вероятность что хотя бы на одном уровне выйдет 2 человека равна 0,9939
Пусть первая труба пропускает литров. Тогда вторая л. Если мы вычтем из более производительной трубы мене производительную, то получим время, которое требуется второй трубе, когда первая труба уже заполнила резервуар. Это время по условию равно 10 мин:
Второй корень явно отрицателен, поэтому он нам не подходит, т. к. скорость/производительность — величина положительная.
Тогда вторая труба по условию пропускает 10+5=15 л/мин
ответ: 1-я труба — 10 л/мин, 2-я труба — 15 л/мин.
Проверка: первая труба заполнит первый резервуар за 150:10=15 мин.
Вторая труба за 75:15=5 мин. Мы видим, что первый резервуар заполняется на 10 минут дольше, что и требовалось доказать.
т.е. 4 жетона
1) 4/30=2/15=примерно 13% - вероятность того, что выпадет жетон с числом кратным 7.