Для наглядности удобно провести некоторое соответствие с трехмерным пространством
Понятно что z(x,y) можно в нем изобразить как некоторую поверхность
Точке (1,4) соответствует , т.е. точка
(*)
Линию удобнее записать как трехмерную кривую
, что будет пересекать поверхность z(x,y) при x=1
Запишем уравнение касательной к этой кривой в точке , в качестве параметра берем переменную x
(#)
(вычисляется по аналогии с )
В прикрепленном файле нарисована поверхность, кривая и касательная.
Зная уравнение касательной, построим единичный вектор в направлении убывания x:
Пусть x=0, тогда из (#) получим точку
Соотв. единичный вектор в направлении этой точки из (*) имеет вид
Понятно что z компонента никак не повлияет на значение производной по направлению, формально вектор можно записать как
И, наконец, найдем искомую производную:
r=d/2=8мм=0.08 дм
l=50м=50*10дм=500дм
1 дм³=1л
V=πr²l=0,08²*500π дм³= 0.0064*500*π дм³≈3.2*3.14= 10,05 л